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Outline
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✦ The SM in a nutshell 
 
✦ Experimental test of the Higgs mechanism 
    - Role of the Higgs boson mass 
    - Higgs quantum numbers 
    - Coupling measurements 
    - Higgs pair production  
 
✦ BSM Higgs Physics / Extended Higgs Sectors 
    - EFT 
    - UV-complete models 
    - Experimental and Theoretical Constraints 
 
✦ Strongly-Interacting Higgs Sectors 
    - SMEFT, EWChL, MCHM4&5, Composite 2HDM 
    
✦ UV-complete Models 
   - 2HDM, C2HDM, N2HDM, MSSM, NMSSM 

✦ Measuring EWSB 
    - BSM di-Higgs production 
    - di-Higgs beats single-Higgs 
    - EFT in di-Higgs production 
    - Measuring BSM  HO, interference effects 
     
✦ Conclusions

λ3H
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The SM in a Nutshell

3



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

The Standard Model of Particle Physics in a Nutshell
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Particle Content

5

u c t
d s b

ν(e) ν(µ) ν(τ)
e µ τ

❖ Particle Content: Matter particles and interaction particles

Quarks

Leptons

Families1                      2                     3

Matter Particles
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Fundamental Forces
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❖ Fundamental Forces interaction particles:

Fundamental Force Mediator/Interaction Particle

 Electromagnetic Force    Photon γ

 Weak Force    W and Z Bosons

 Strong Force    Gluons g

 Not in the Standard Model:

 Gravity    Graviton
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Gauge Symmetries
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❖ Description of fundamental interactions: with quantum field theories 
   fields are quantized, e.g. photon: electromagnetic field quantum

interaction: exchange  
of field quanta

❖ Relativistic quantum field theories: invariant under space-time transformations:  
    Lorentz transformations + space-time translations (Poincaré group)

❖ Construction principle: requirement of local gauge invariance (internal symmetry)

❖ Gauge symmetries of the Standard Model:       U(1)Y x SU(2)L x SU(3)C

{ {

electroweak        strong    interaction
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Higgs Mechanism
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❖ The problem with the masses: 

✏ Fermion Lagrangian for fermion field 

Kinetic term is invariant under chiral transformations

but not the mass term: 

✏ Gauge boson Lagrangian

U(1) gauge transformation

Mass term breaks gauge invariance:
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Higgs Mechanism
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❖ Higgs Mechanism: 

Generation of particle masses through spontaneous symmetry breaking (SSB)

❖ Higgs Lagrangian:  ℒHiggs= (D𝛍𝜱)(D𝛍𝜱)†-V(𝜱)  
 

                                 with the Higgs potential   V(𝜱)= 𝛍2(𝜱†𝜱) + 𝛌(𝜱†𝜱)2 

 

   The Higgs potential has a non-vanishing vacuum expectation value (VEV) v for 𝛍2 < 0 
   |𝜱|2 = v2 = -(𝛍2)/(2𝛌), v=246 GeV

❖ SSB: Lagrangian preserves the 
            gauge symmetry, but the  
            ground state breaks it 

❖ Generation of particle masses: through particle interactions with Higgs in the ground state

and  < Φ > =
1

2
(0,v)T
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Example Fermion Mass Generation
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Unitarity Restoration
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✦ Scattering of longitudinally polarized W bosons:   
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Unitarity Restoration
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✦ Scattering of longitudinally polarized W bosons:   

Higgs ensures unitarity of W boson scattering if HWW coupling proportional  m2
W
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Experimental Test of the Higgs Mechanism
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Establishing the Higgs Mechanism
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4th July 2012

Discovery of new particle announced by 
CERN!!                             

But how can we be sure that it is a 
Higgs? We must 

Measure its couplings to the other 
SM particles   
We must determine its spin and 
CP quantum numbers 
We must measure the Higgs  
potential, I.e. its self-couplings                           

My Diary
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The Role of the Higgs Boson Mass
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✦ Present Accuracy:                                                                                            [ATLAS,CMS]

MH = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV 

✦ Why precision?

∗ Self-consistency test of SM at quantum level  
   (e.g.: Higgs loop corrections to W boson mass)  
 
  

∗ MH ↔ stability of the electroweak vacuum                                       [Degrassi eal;Bednyakov eal] 
 
∗ Higgs mass uncertainty feeds back in uncertainty on Higgs observables 
 
 

∗ Test parameter relations in beyond-SM theories  

   ⇒ indirect constraint of viable BSM parameter space!  



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

The Role of the Higgs Boson Mass
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MH = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV 

✦ Why precision?

∗ Self-consistency test of SM at quantum level  
   (e.g.: Higgs loop corrections to W boson mass)  
 
  

∗ MH ↔ stability of the electroweak vacuum                                       [Degrassi eal;Bednyakov eal] 
 
∗ Higgs mass uncertainty feeds back in uncertainty on Higgs observables 
 
 

∗ Test parameter relations in beyond-SM theories  

   ⇒ indirect constraint of viable BSM parameter space!  

✦ Present Accuracy:                                                                                            [ATLAS,CMS]
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The W Boson Mass
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tension with 

SM at 7σ

new physics -> 

compatibility

                                                                                                                                [CDF,2022]
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The Role of the Higgs Boson Mass
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✦ Present Accuracy:                                                                                            [ATLAS,CMS]

MH = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV 

✦ Why precision?

∗ Self-consistency test of SM at quantum level  
   (e.g.: Higgs loop corrections to W boson mass)  
 
  

∗ MH ↔ stability of the electroweak vacuum                                       [Degrassi eal;Bednyakov eal] 
 
∗ Higgs mass uncertainty feeds back in uncertainty on Higgs observables 
 
 

∗ Test parameter relations in beyond-SM theories  

   ⇒ indirect constraint of viable BSM parameter space!  



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

Stability of the Electroweak Vacuum
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Stability of the Electroweak Vacuum
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Wow!
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Stability of the Electroweak Vacuum
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Wow!
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Stability of the Electroweak Vacuum

21

[Degrassi,Di Vita,Elias-Miro,Espinosa,’12]                                    [Bednyakov,Kniehl,Pikelner,Veretin,’15]
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The Role of the Higgs Boson Mass
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✦ Present Accuracy:                                                                                            [ATLAS,CMS]

MH = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV 

✦ Why precision?

∗ Self-consistency test of SM at quantum level  
   (e.g.: Higgs loop corrections to W boson mass)  
 
  

∗ MH ↔ stability of the electroweak vacuum                                       [Degrassi eal;Bednyakov eal] 
 
∗ Higgs mass uncertainty feeds back in uncertainty on Higgs observables 
 
 

∗ Test parameter relations in beyond-SM theories  

   ⇒ indirect constraint of viable BSM parameter space!  

Precision measurements 
of SM parameters  
(mW, mtop) crucial
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The Role of the Higgs Boson Mass

23
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The Role of the Higgs Boson Mass
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✦ Present Accuracy:                                                                                            [ATLAS,CMS]

MH = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV 

✦ Why precision?

∗ Self-consistency test of SM at quantum level  
   (e.g.: Higgs loop corrections to W boson mass)  
 
  

∗ MH ↔ stability of the electroweak vacuum                                       [Degrassi eal;Bednyakov eal] 
 
∗ Higgs mass uncertainty feeds back in uncertainty on Higgs observables 
 
 

∗ Test parameter relations in beyond-SM theories*  

   ⇒ indirect constraint of viable BSM parameter space!  
indirect constraints 

on viable BSM 
parameter space

*(will come back to this)
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Higgs Spin and CP Quantum Numbers
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❖ Quantum numbers of the Higgs boson: 

✽ 𝝲𝝲→H or H→𝝲𝝲  ~> J ≠ 1

❖ CP properties:  
 
✽ SM Higgs JCP = 0++; beyond the SM (BSM) 
     
    ◦more than one spin-0 particle possible 
    ◦CP-even, CP-odd, CP-violating Higgs states 
 
✽ Study of CP properties ~> insights in beyond-SM (BSM) physics 
 
✽ existing and future colliders: 
   establish CP properties, determine amount of CP-mixing

We must  determine its spin and CP quantum  numbers
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Determination of Higgs Quantum Numbers
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Example for Spin and CP Determination
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❖ Higgs Decay into Z boson pair: 

❖ Angular distributions for particle w/ arbitrary 
   spin and parity:  
   helicity analyses & operator expansion 

SM Double polar angle distribution

SM Azimuthal angular distribution

✏ Azimuthal angular distribution differs for scalar and pseudoscalar particle:

✏ Threshold behavior allows to determine the spin of the particle: 
 

spin 0: linear rise w/ β 
spin 1 (2) particle ~ β3 (~ β5)
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Extraction of Higgs Quantum Numbers

28

[Adapted from Choi,Miller,MM,Zerwas,´03] [Adapted from Choi,Miller,MM,Zerwas,´03]

CP-even or CP-odd                                                   Spin 0 or Spin 2
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Experiment: Hypothesis Test
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[ATLAS,1506.05669]
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Higgs Coupling Measurements
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❖ Higgs mechanism: Higgs couplings to SM particles ~ to masses of the particles 

❖ Experimental test: various production and decay channels ~> extract couplings

~ 𝛤WW x BR(H->𝛕𝛕) ~  𝛤WW x 𝛤(H->𝛕𝛕)/𝛤tot

at LHC: not all final states are accessible 
              small SM 𝛤tot non measurable

❖ Experimental provide best fit values on mu-values 
    (signal strength parameters): 
 
 
 

    For extraction of coupling values, a Lagrangian parametrizing possible new physics  
    couplings needs to be defined ~> kappa framework

We must  measure its couplings to the other SM particles
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The Kappa Framework
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❖ Kappa Framework: Simplest approach

✏ 𝜅W=𝜅Z≡𝜅V justified by assumed custodial symmetry 
 

✏ assumes that there are no flavor-changing neutral couplings (FCNCs) 
 

✏ loop induced couplings (H𝜸𝜸, HZ𝜸, Hgg) parametrized in terms of fundamental couplings 
 

✏ assumes that there are no invisible or undetected Higgs decays beyond the SM 
 
 

✏ with more data, higher precisions take individual 𝜅F for the different fermions 

✏ distributions are also sensitive to the Lorentz structure of the couplings, which is 
    taken to be SM-like in the kappa framework  
 

✏ For 𝜞tot model assumptions have to be made (e.g. 𝜞tot dominated by partial widths into 
    WW,ZZ,bb,𝝉𝝉,gg,𝜸𝜸)
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Signal Strength Fit

32

assumes  assumes  

[Tumasyan eal,2207.00043]
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Coupling Modifiers
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The discovered Higgs boson looks very SM-like

[Aad eal,2207.00092]

[Tumasyan eal,2207.00043]
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Trilinear Higgs Self-Coupling

34

We must  measure the  Higgs  potential, i.e.  self-couplings

❖ SM Higgs potential: in physical gauge

❖ Importance of the trilinear Higgs self-coupling:

- Determines shape of the Higgs potential 
- Sensitive to beyond-SM physics 
- Important input for electroweak phase transition*

*matter-asymmetry 
  through electroweak 
  baryogenesis
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Double Higgs Production at the LHC
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[HH, White paper]
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Double Higgs Production at the LHC
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[HH, White paper]

Small cxn, large bkg: 
experimental challenge ⤳ 

precise theory  
predictions required
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Higgs Pair Production through Gluon Fusion
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✦ Loop mediated at leading order - SM: third generation dominant

✦ Threshold region sensitive to 𝛌; large MHH: sensitive to ctt/cbb [e.g. boosted Higgs pairs]

[Baglio,Djouadi,Gröber,MM,Quévillon,Spira]

decreasing with MHH
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Experimental Limits
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[Rui Zhang, ATLAS, HH Workshop´22]

[CMS,2207.00043]

-1.24 ≤ 𝝹𝝺 ≤ 6.49
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Higher-Order QCD Corrections
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✦ 2-loop QCD corrections: ≲ 70% [HTL, 𝛍=MHH/2]                                   [Dawson,Dittmaier,Spira] 

✦ 2-loop QCD corrections: 𝛔 = 𝛔0 + 𝛔1/mt2 + … + 𝛔4/mt8 

[refinement: full LO at differential level]                               [Grigo,Hoff,Melnikov,Steinhauser] 
  

✦ Mass effects @ NLO in real corrections: ~ - 10%                 
                                               [Frederix,Frixione,Hirschi,Maltoni,Mattelaer,Torrielli,Vryonidou,Zaro] 
   

✦ NNLO QCD corrections: ~ 20% [HTL]              [de Florian,Mazzitelli; Grigo,Melnikov,Steinhauser] 
  

✦ N3LO QCD corrections: ~ 5% [HTL]                                                         [Chen,Li,Shao,Wang] 
  

✦ NNLO Monte Carlo: inclusion of full top-mass effects @ NLO [partly at NNLO] 
                                                             [Grazzini,Heinrich,Jones,Kallweit,Kerner,Lindert,Mazzitelli] 
  

✦ NLO: matching to parton showers                                 [Heinrich,Jones,Kerner,Luisoni,Vryonidou] 
  

✦ New expansion/extrapolation methods:  
(i) 1/mt2 expansion + conformal mapping + Padé approximants                    [Gröber,Maier,Rauh] 
(ii) pT2 expansion                                                                     [Bonciani,Degassi,Giardino,Gröber] 
  

✦  NLO: small mass expansion [Q2 ≫ mt2]                            [Davies,Mishima,Steinhauser,Wellmann] 
  

✦  Combination of full NLO and small mass expansion  
                                                        [Davies,Heinrich,Jones,Kerner,Mishima, Steinhauser,Wellmann]
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Higher-Order QCD Corrections
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Complete list, see e.g. twiki of LHC Higgs Working Subgroup HH 
and recent reviews 

   -> recommendations for cross sections to be used given for 
            - different c.m. energies 
            - different coupling modifiers 

   -> uncertainties on di-Higgs cross sections

𝝹𝝺
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NLO QCD Including the Full Top Mass Dependence
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𝝹𝝺

[Borowka,Greiner,Heinrich,Jones,Kerner, 
 Schlenk,Schubert,Zirke]

[Baglio,Campanario,Glaus,MM,Ronca,Spira,Streicher]



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

Uncertainties due to mt
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✦ Use                        and scan                             uncertainty = envelope:

✦ Bin-by-bin interpolation: 
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Why a Dynamical Scale
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✦ Large momentum expansion (ŝ = Q2 ≫ mt2), two form factors: 
                                                                                         [Davies,Mishima,Steinhauser,Wellmann]

✦⇒ scale 𝝁t ~ Q preferred at large Q 
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Scale Choice
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[Baglio,Campanario,Glaus,MM,Ronca,Spira]
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Uncertainties at NLO
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✦ Renormalization and factorization scale uncertainties at NLO:

✦ mt scale/scheme uncertainties at NLO:

✦ Linear sum of uncertainties ~>

[Baglio,Campanario,Glaus,MM,Ronca,Spira]
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Final Uncertainties at FTapprox
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✦ Final combined renormalization/factorization scale and mt scale/scheme uncertainties  
at NNLOFTapprox*:

*FTapprox: full NNLO QCD in the heavy-top-limit with full LO and NLO mass effects  
and full mass dependence in the one-loop double real corrections at NNLO QCD

[Baglio,Campanario,Glaus,MM,Ronca,Spira]
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Uncertainties for Different Higgs Self-Coupling Values
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✦ Final combined uncertainties at NNLOFTapprox: [Baglio,Campanario,Glaus,MM,Ronca,Spira]
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Electroweak Corrections to SM Higgs Pair Production 
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✦ Top-Yukawa-induced corrections to Higgs pair production [MM,Schlenk,Spira,`22] 
✦ NLO EW corrections to gg->HH and gg->gH in the large mt limit  

[Davies,Schönwald,Steinhauser,Zhang,’23] 
✦ Higgs boson contribution to the leading 2-loop Yukawa corrections to gg->HH 

[Davies,Mishima,Schönwald,Steinhauser,Zhang,´22] 
✦ Complete NLO EW corrections [Bi,Huang,Huang,Ma,Yu,´23]

[Bi,Huang,Huang,Ma,Yu,2311.16963]

Impact of EW corrections  
on total cxn: -4% 
 
Impact on differential distributions 
can be +15%…-10% 
 
Significantly reduced theoretical 
uncertainty
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10 Years LHC at the Energy Frontier 
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Success of experiment  
and theory

SM provides 
consistent 

description of 
the data at the 
quantum level

Still! 
there are  
many open 
questions 

left!
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Open Questions
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Particle physics Cosmology

origin of electroweak symmetry breaking 
  

hierarchy problem 
  

nature of the Higgs boson 
  

fermion mass and flavor puzzle 
  
origin of neutrino masses

nature of Dark Matter 
  

matter-antimatter asymmetry 
  

dark energy 
  

inflation 
  
how to incorporate gravity

Decipherment of fundamental laws of nature: 
judicious combination of  

theoretical methods/interpretation 
and experimental input/scrutiny

New physics is required, but there is no clear indication at which energy scale
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The Challenge

51

Discovered Higgs Boson 
behaves very SM-like

Consistency Test 
of the SM 

at the quantum level

No direct discovery of 
New Physics so far

➱

New physics may be heavy, with   

new particles at a large mass scale 

New physics may be light,  

but with small couplings 

=> New physics is subtle:  

              
          small cross sections  

              
          novel signatures
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Strategy for the Exploration of the New Physics Landscape 

52
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Strategy for the Exploration of the New Physics Landscape 

53

Now: We have the 
Higgs boson - What 
do we learn from 
the Higgs boson?
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What do we Learn from Higgs Physics? 

54

ℒHiggs = (𝒟𝜇𝛷i)(𝒟𝜇𝛷i)† - V(𝛷i)  + ℒYukawa

- anomalous Higgs 
  gauge couplings 𝛅cZ, 
  cZZ,cZ□,c𝜸𝜸,cZ𝜸,cgg 

- CP violation 

✏ New Physics & DM 
✏ Baryogenesis

- coupling relations 
   gX~mX(2) 
 
✏ Establish Higgs 
   mechanism

- Higgs mass 
- Higgs self-interaction 
   𝞴HHH+𝞭𝝹𝞴 
- vacuum structure 
- CP violation 
- portal to hidden sector 
 

✏ Self-consistency SM 
✏ Ultimate test  
   Higgs mechanism 
✏ Vacuum stability 
✏ New Physics&DM 
✏ Matter asymmetry 
✏ Cosmological  
   evolution

- anomalous couplings 
   𝝳yt, 𝝳yc, 𝝳yb, 𝝳y𝞽, 𝝳y𝞵,𝝳ye 

- CP violation 
  
✏ Flavor/Matter puzzle 
✏ New Physics 
✏ Baryogenesis

Establish 
Higgs 

Mechanism

New  
Physics

Matter- 
Antimatter 
Asymmetry

Flavor 
Matter 
Puzzle

Evolution 
of  

Cosmos
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BSM Higgs Physics - Extended Higgs Sectors

55



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

Vast New Physics Landscape 

56

Special Offer: BSM Models
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A
H

H1

3

2 H2

A1

H H
+ -

Extended Higgs Sectors

57

Why extended Higgs sectors? 

* fermion/gauge sectors not minimal - why should the Higgs sector be minimal?  

* extended Higgs sectors: 
alleviate metastability, DM candidate, additional sources of CP-violation ← baryogenesis 

* many new physics models require extended Higgs models ← supersymmetry!

How systemize approach not to miss any new physics sign? 

* effective theory (rather model-independent, new physics effects at high energy scales) 

* specific well-motivated UV-complete models
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SM Effective Theory (SMEFT)

58

◆ SMEFT approach: 
 

✽ SM field content and SM gauge symmetries, no New Physics at E < 𝚲 

✽ SM deviations: higher-dimensional operators built from SM fields 

✽ Operators = low-energy remnants of heavy new physics integrated out at 𝚲 => 

✽ Operators suppressed by scale 𝚲

[Burgess,Schnitzer;Leung eal;Buchmüller,Wyler;Grzadkowski eal; 
Hagiwara,Ishihara,Szalapski;Zeppenfeld;Giudice eal]
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SM Effective Theory (SMEFT)

59

◆ SMEFT approach: 
 

✽ SM field content and SM gauge symmetries, no New Physics at E < 𝚲 

✽ SM deviations: higher-dimensional operators built from SM fields 

✽ Operators = low-energy remnants of heavy new physics integrated out at 𝚲 => 

✽ Operators suppressed by scale 𝚲 
 
◆ New interactions of SM particles: Higgs part of a doublet field (EWSB linearly realized) ~>  
 

    leading new physics (NP) effects described by D=6 operators

[Burgess,Schnitzer;Leung eal;Buchmüller,Wyler;Grzadkowski eal; 
Hagiwara,Ishihara,Szalapski;Zeppenfeld;Giudice eal]
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Electroweak Chiral Lagrangian (EWChL)

60

◆ SMEFT approach: 
 

✽ EWSB linearly realized: Higgs boson part of a weak doublet 

✽ Additional expansion in  (  typical coupling of the NP sector) 
 
 
◆ EW Chiral Lagrangian (EWChL): 
 

✽ EWSB non-linearly realized: Higgs treated as singlet 

✽ Chiral expansion

g*v/Λ ≪ 1 g*

[Burgess,Schnitzer;Leung eal;Buchmüller,Wyler;Grzadkowski eal; 
Hagiwara,Ishihara,Szalapski;Zeppenfeld;Giudice eal]

[Contino eal; Azatov eal; Alonso eal; 
Brivio eal; Elias-Miró eal; Buchada eal]
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Global SMEFT Fit

61

◆ SMEFT analysis: 
 

✽ Model and basis independence: All relevant operators need to be included 

✽ Number of non-redundant dim-6 operators for 3 generations: 2499, 59 for 1 generation 
 [Grzadkowski eal;Alonso eal]
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Global SMEFT Fit
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◆ SMEFT analysis: 
 

✽ Model and basis independence: All relevant operators need to be included 

✽ Number of non-redundant dim-6 operators for 3 generations: 2499, 59 for 1 generation 
 [Grzadkowski eal;Alonso eal]

✽ Global fit: complicated parameter space w/ many degenerate/flat directions and local minima ~> 

◆ Practical approach - reduce number of operators by: 
 

✽ Symmetry assumptions, e.g. flavor, CP conservation 
 

✽ focus on subsectors: Higgs, electroweak, top, Higgs-electroweak, top-Higgs, …: 
 

     ◇ include only operators relevant to the considered particle(s)/processes 
     ◇ assume other operators well constrained from different processes 
     ◇ note: not always justified! 
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EFT Effect at NLO QCD in HH
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[Gröber,MM,Spira,Streicher,’15] [Buchalla,Capozi,Celis,Heinrich,Scyboz,’18]

Tops integrated out at NLO: 
- flat dependence of K-factors 
   [see also de Florian,Fabre,Mazzitelli,´17]

Inclusion of full top dependence at NLO: 
- non-uniform K-factors

cg cgg

c3/hhh

ct ctt

K-factor: 
ratio of NLO  
to LO observable
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Investigations of specific UV-complete models: 

* Indisponible: complement EFT approach  

* EFT approach cannot capture new physics effects due to new light particles

Guidelines for model selection 

* simplicity  

* compatibility with relevant experimental  
and theoretical constraints 

* solve (some of the) flaws of the SM 

* testable in experiment 

Validity of the models: they have comply with 

* experimental constraints 

* theoretical constraints
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✏ Electroweak rho parameter very close to 1:  (in SM automatically fulfilled) 

* model with n scalar multiplets  with weak isospin , weak hypercharge  and VEVs  
of the neutral components: rho parameter at tree level 
 

                                                

* SU(2) singlets with  and SU(2) doublets with  satisfy 
                                                       

and hence 

ρ =
M2

W

M2
Z cos2 θW

≈ 1

ϕi Ii Yi vi

ρi =
∑n

i=1 [Ii(Ii + 1) − 1
4 Y2

i ]vi

∑n
i=1

1
2 Y2

i vi

Y = 0 Y = ± 1

I(I + 1) =
3
4

Y2

ρ = 1

✏ Flavor-changing neutral currents (FCNCs): very stringent constraints from experiment 
 

    solution for multi-Higgs models: apply symmetries such that all right-handed fermions 
    of a given electric charge couple to exactly one Higgs doublet (cf. e.g.(N)2HDM type I…IV); 
    minimal flavor violation (flavor violation only arises from CKM matrix)
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✏ Further constraints: 

* Electroweak precision tests (EWPTs): Peskin-Takeuchi resp. S,T,U parameters parametrize 
potential NP contributions to EW radiative corrections; S,T,U are zero for SM ref. point; 
assumptions: 
 

- EW gauge group is SU(2)LxU(1)Y ~> no additional gauge bosons beyond , e.g. no Z´ 
- New physics couplings from light fermions are suppressed ~> only oblique corrections  
  (= vacuum polarization), no box and vertex corrections need to be considered 
- NP energy scale is large compared to the EW scale ~> expansion in ,  = NP scale 
 

=> parametrization in terms of four vacuum polarization functions: self-energies of the  
     and mixing between  and  induced by loop diagrams

Z, W±, γ

q2/M2 M

Z, W±, γ Z γ
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✏ Further constraints: 

* Electroweak precision tests S,T,U parameters 
 

- S parameter: measures difference between left-handed & right-handed fermions w/ weak 
   isospin ~> tightly constrains number of new fourth-generation chiral fermions 
- T parameter: measures isospin violation (<- sensitive to loop corrections to Z and W vacuum 
   polarization) 
- S and T parameter: affected by varying the Higgs boson mass 
   Before discovery: mass of Higgs boson constrained by EWPTs to lie within close to 
   LEP lower bound (114 GeV) and 200 GeV. 
- U parameter: not very useful in practice, parametrizes dim-8 effects

* Flavour constraints: NP effects to flavor observables from loop corrections 
- Example:  receives NP contributions from  exchange; 
  sets lower bound of about 800 GeV on  in the 2HDM type II

B → Xsγ H±

mH±

SM diagram:
[Deschamps eal,’09;Mahmoudi,Stal,’09;Hermann eal,’12;Misiak eal,’15; 
Misiak,Steinhauser,’17;Misiak,Rehman,Steinhauser,’20]
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Experimental Constraints on Extended Higgs Sectors
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✏ Further constraints: 

* Higgs data:  
- one of the Higgs bosons has to have a mass of 125 GeV and behave very SM-like, i.e. 
   comply with LHC Higgs data 
- remaining Higgs bosons have to comply with LHC exclusion limits from searches for 
   additional Higgs bosons 

* Direct searches for new particles predicted by the model: 
- model has to respect exclusion limits on these particles (e.g. lower bounds on  
  stop or gluino masses in supersymmetric models) 

* Low-energy observables like the anomalous magnetic moment 

* Electric Dipole Moment (EDM) constraints: stringent constraints on CP violation in  
CP-violating models 

* Dark Matter (DM) observables (relic density, direct and indirect detection limits):  
constrains models w/ DM candidate 
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✏ Theory constraints: (will be discussed in detail below) 

* Higgs potential bounded from below  

* EW vacuum with v=246 GeV is the global minimum 

* Perturbative unitarity 



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

Parameter Scans of the Models
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✏ Parameter scans performed with ScannerS:             [Coimbra,Sampaio,Santos;MM,Sampaio,Santos,Wittbrodt] 
 

        ScannerS: Tool for performing scans in models with extended Higgs sectors  
                     checking for the theoretical and experimental constraints 
 

                - link to HiggsTools to check for Higgs constraints            
                                                                             [Bahl,Biekötter,Bechtle,Heinemeyer,Li,Paasch,Weiglein,Wittbrodt] 
 

    - link to MicrOMEGAs to check for Dark Matter constraints                [Bélanger,Boudjema,Pukhov eal]

Parameter scans w/ constraints: 
Reduction of the parameter space 
to the still allowed parameter space 
~> sharpens predictions of the models
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Higgs Realization
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Weakly coupled models Strongly-interacting dynamics

SM and its singlet, doublet,  
triplet extensions, SUSY Composite Higgs Models

New particles necessary 
to stabilize the Higgs mass

Resonances for unitarity 
Higgs boson composite object
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Composite Higgs Boson
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[Cartoon taken from R.Contino, 1005.4269]
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Composite Higgs Boson
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Partial Compositeness
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2 Benchmark Models MCHM4&5
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Higgs Anomalous Couplings
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[adapted from Grojean,Espinosa,MM,1003.3251]

MCHM5
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Composite Double Higgs Production
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New Physics in Higgs Pair Production
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Applied Constraints
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Sensitivity to New Physics in Higgs Pair Production
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[Gröber,MM,Spira,’16]
MCHM10 w/ partial compositeness; blue points: HH distinguishable from SM HH at 3σ
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Higgs Pair Production in Composite 2HDM
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[De Curtis,Delle Rose,Moretti,Yagyu,´18] 2-Higgs Doublet Model (2HDM) w/ compositeness:∙

 Particle content: 2HDM:  
   - 2 CP-even Higgs boson  with , 1 CP-odd , charged Higgs pair  
 

   - partial compositeness: 

∙
h, H mh ≤ mH A H±

 Higgs Pair Production∙

H exchange can resonantly  
enhance hh, if  mH > 2mh
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Invariant Mass Distribution
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[De Curtis,Delle Rose,Egle,Moretti,MM,Sakurai,´23] Benchmark point BP3 w/ resonant enhancement∙

Red line: mimics elementary 2HDM; 
constructive(destructive) interference 
of triangle and box diagrams  
before(after) peak

Orange line: adding in 2-Higgs-2-fermion 
coupling contributions, interferes  
destructively ~> inversion of effect

Light blue line: all top partners added in 
enhancement before and after peak  
compared to SM

=> can in principle distinguish elementary 
from composite 2HDM
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UV-Complete Models
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The 2-Higgs Doublet Model (2HDM)
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 The 2-Higgs Doublet Model (2HDM) - Motivation: 
   - one of the simplest SM extensions 
   - provides DM candidate in its inert version 
   - supersymmetry requires introduction of two Higgs doublets 
   - provides strong-first-order phase transition (one of the three Sakharov conditions 
     for the generation of the baryon asymmetry through EW symmetry breaking)  
 
 Compatibility with constraints? 

✽ Rho parameter: fulfilled as it is a doublet extension 
 

✽ Flavour-changing neutral currents: will be discussed below 
 

✽ Unitarity constraints: amplitudes for longitudinal gauge boson scattering ( ) 
   and fermion scattering  ( ,  =fermion w/ positive helicity) must not violate 
   unitarity bounds. In SM, this is ensured by existence of light Higgs with couplings  
    and  

     In 2HDM, there are two scalar Higgs bosons coupling to VV: h and H. For unitarity, they 
   must fulfill the sum rules 
 
           and       

∙

∙

VLVL → VLVL
f+ f̄+ → VLVL f+

gHWW =
gmW

2
gHff =

gmf

2mW

∑
i

g2
hiVV = g2

hVV + g2
HVV = (gSM

HVV)2 ∑
i

ghiVVghi ff = ghVVghff + gHVVgHff = gSM
HVVgSM

Hff
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The 2HDM Higgs Potential
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 2HDM Higgs potential: SU(2)LxU(1)Y gauge-invariant, renormalizable, CP conservation, 
   discrete  symmetry under which ,   => potential w/ softly broken 
∙

ℤ2 Φ1 → − Φ1 Φ2 → Φ2 ℤ2

V = m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − m2

12 (Φ†
1Φ2 + Φ†

2Φ1) +
λ1

2 (Φ†
1Φ1)

2
+

λ2

2 (Φ†
2Φ2)

2

+λ3Φ†
1Φ1Φ†

2Φ2 + λ4Φ†
1Φ2Φ†

2Φ1 +
λ5

2 [(Φ†
1Φ2)

2
+ (Φ†

2Φ1)
2]

CP conservation: all parameters are real

 Minimum of the potential:∙

 Expansion of Higgs doublets around VEVs: ∙

 Higgs spectrum and masses: Plug in expansion in V, collect all terms bilinear in the fields ~> 
  mass matrices; diagonalize mass matrices w/ orthogonal matrices that are functions of 
  the mixing angles  (neutral CP-even matrix) and  (neutral CP-odd and charged matrices) ~>    
  physical states 

∙

α β

[T.D.Lee,Phys.Rev.D8(1973)1226; Branco eal.,1106.0034]
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The 2HDM Higgs Potential
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 Higgs spectrum and masses:∙

2 neutral CP-even Higgs bosons: h and H, with  
1 neutral CP-odd Higgs boson: A 
2 charged Higgs bosons: 

mh ≤ mH

H+, H−

Mixing angle  β : tan β =
v2

v1
; to reproduce the W and Z masses, we must have v2

1 + v2
2 = v2

Masses:

 matrix elements of 
the mass matrix in the 
neutral CP-even sector

ℳij

 2HDM input parameters:  ∙ mh, mH, mA, mH±, m2
12, cos(β − α), v, tan β
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Decoupling
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 Alignment limit: one of the neutral Higgs bosons has to be approximately aligned with the 
  direction of the Higgs VEV in field space ~> limit of a SM Higgs
∙

✏ Masses of the heavy 2HDM Higgs bosons take the form:

 Alignment with decoupling: Alignment limit in extended Higgs sector realized if all additional 
  Higgs states are very heavy: decoupling limit
∙

 Alignment without decoupling: occurs generically in 2HDMs∙

 linear combination of λi λ1, . . . , λ5

✏ In case : heavy Higgs bosons decouple, h behaves SM-like ( ) 
    alignment/decoupling limit

M2 ≫ λiv2 sin(β − α) → 1

✏ Strong coupling regime: : large value of  for  large (limited by perturbativity)M2 ≤ λiv2 mΦ λi

✏ alignment without decoupling: H can become SM-like particle ( ) ~> light Higgs  
    h with mass below 125 GeV in the spectrum   

cos(β − α) → 1
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Flavour-Changing Neutral Currents
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 Yukawa Lagrangian: ∙

Problem w/ 2 Higgs doublets: Mass and coupling matrices cannot be diagonalized simultaneously 
~> FCNC at tree-level!

 Solution: Extend discrete  symmetry of Higgs sector to Yukawa sector such that only 
   one Higgs doublet couples to a given right-handed fermions 
∙ ℤ2
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Flavour-Changing Neutral Currents
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 Four 2HDM types: ∙

 Alternative solution: alignment in flavor space of the Yukawa couplings∙

masses and couplings are proportional to each other ~> can be diagonalized simultaneously 
four Yukawa types appear as special cases of the aligned 2HDM (A2HDM)
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Theory Constraints
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 Potential Bounded-From-Below: quartic part of the potential positive for arbitrarily large  
                                                    field values ~> (tree-level analysis)
∙

Inclusion of higher-order effects: check the tree-level conditions for running  at any  
scale Q up to which model is considered to be valid 
 

                                                                  

λi

dλi

d ln Q
= βi(gj)

[Deshpande,Ma,’78;Klimenko,’85]
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Theory Constraints
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 Potential Bounded-From-Below: quartic part of the potential positive for arbitrarily large  
                                                    field values ~> (tree-level analysis)
∙

Inclusion of higher-order effects: check the tree-level conditions for running  at any  
scale Q up to which model is considered to be valid 
 

                                                                  

λi

dλi

d ln Q
= βi(gj)

 Electroweak vacuum w/ v=246 GeV is the global minimum:  
   possible 2HDM vacuum directions  
∙

ωi

[Deshpande,Ma,’78;Klimenko,’85]

neutral CP-conserving minima:  
neutral CP-violating minimum:  
charge-breaking minimum: 

ω1, ω2
ωCP

ωCB
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Theory Constraints
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 Electroweak vacuum w/ v=246 GeV is the global minimum:∙
[Ferreira eal,’04;Barroso eal,’05;Ivanov,’07;Ivanov’08]

- If the potential has a CP-conserving minimum  , then any other stationary point  
  (either  or ) is a saddle point w/ a higher value of the potential  
 
 
- Two CP-conserving minima could coexist, however! Panic Vacuum! 
 

  Vacuum w/ the symmetry breaking pattern (v=246 GeV) is the global minimum if and only if 
 

                                 

ω1, ω2
ωCP ωCB

D = m2
12(m

2
11 − λ1/λ2m2

22)(v2/v1 − (λ1λ2)1/4) > 0

[Ivanov’08;Barroso,’12,’13]

 Perturbative Unitarity:  
  make sure that the potential couplings do not become non-perturbatively large 
  analyze eigenvalues of the S matrix for scalar-scalar scattering amplitudes:

∙

=> Require (tree-level perturbative unitarity:
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 Electroweak vacuum w/ v=246 GeV is the global minimum:∙
[Ferreira eal,’04;Barroso eal,’05;Ivanov,’07;Ivanov’08]

- If the potential has a CP-conserving minimum  , then any other stationary point  
  (either  or ) is a saddle point w/ a higher value of the potential  
 
 
- Two CP-conserving minima could coexist, however! Panic Vacuum! 
 

  Vacuum w/ the symmetry breaking pattern (v=246 GeV) is the global minimum if and only if 
 

                                 

ω1, ω2
ωCP ωCB

D = m2
12(m

2
11 − λ1/λ2m2

22)(v2/v1 − (λ1λ2)1/4) > 0

[Ivanov’08;Barroso,’12,’13]

 Perturbative Unitarity:  
  make sure that the potential couplings do not become non-perturbatively large 
  analyze eigenvalues of the S matrix for scalar-scalar scattering amplitudes:

∙

=> Require (tree-level perturbative unitarity:

Note: These rules are  
No longer valid when  
vacuum is investigated 
including higher-order 
corrections
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Theory Constraints
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 Inclusion of renormalization group running of the parameters: 
  (capture - „hopefully" - bulk of higher-order corrections)
∙

[Basler,Ferreira,MM,Santos,’17]

- Perform RGE running of all potential parameters and VEVs starting at mZ 
- At each scale between mZ and the Planck scale verify whether the theoretical constraints 
  are still verified 
- If yes, proceed to a higher scale and repeat

Note: Higgs mass values and quartic couplings are closely related ~> if at scale mZ we start 
with a heavy Higgs spectrum ~> start values of quartic couplings  are large ~> scale up to 
which model remains perturbative, is lowered

λi
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Theory Constraints and High Scale Impact
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[Basler,Ferreira,MM,Santos,’17]Flavor constraints set stringent lower bound on  in 2HDM Type II!mH±

Type I Type II

 and requirement of validity up to the Planck scale ~> alignment 
(exp. & theor. constraints included)
mH± ≥ 500GeV

See also [Chakrabarty eal; Bhupal Dev eal; Das,Saha; Chowdhury,Eberhardt; Ferreira eal; Cacchio eal; 
Cherchiglia,Nishi; Krauss eal; Goodsell,Staub; Braathen eal; …] 
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 Precision predictions to Higgs observables indispensable: match experimental precision; 
  be sensitive to subtle beyond-SM (BSM) effects; if detected, identify underlying model, 
  distinction from possibly other models w/ similar features

∙

 EW higher-order corrections in the 2HDM: 
  - cautiously chose renormalization scheme in order not to introduce gauge parameter  
    dependence in HO corrections from mixing angle renormalization;  
 
     
    solution: apply so-called tadpole scheme for the renormalization of the VEV  
                  project out gauge-parameter independent terms (pinching)

∙

[Krause,Lorenz,MM,Santos,Ziesche,’16;Krause,MM,Santos,Ziesche,’16] 
[Denner,Jenniches,Lang,Sturm,’16;Altenkamp,Dittmaier,Rzehak,’17;Denner,Dittmaier,Lang,’18]

See also N2HDM: [Krause,López-Val,MM,Santos,’17]; multi-Higgs: [Fox,Grimus,Löschner,’18;Grimus,Löschner,’18]; 
singlet-extended SM: [Bojarski,Chalons,López-Val,Robens]; [Dittmaier,Rzehak,’22]

- quartic couplings input parameters, only constrained by unitarity constraints => 
 

 
  HO corrections involving trilinear Higgs self-coupling can be parametrically enhanced

[Kanemura,Kiyoura,Okada,Senaha,Yuan,’02;Braathen,Kanemura,’19,’20]; [Krause,MM,Santos,Ziesche,’16]; [Bahl,Braathen,Weiglein,’22]
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Parametrically enhanced NLO corrections in the non-decoupling limit

Parameter scan in the 2HDM type II, exp. & theor. constraints applied
[Krause,MM,Santos,Ziesche,’16]
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Program Codes for HO Corrections to the 2HDM
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[Krause,MM,Spira,’18] Fortran code 2HDECAY:  
  partial decay widths and branching ratios at one-loop EW and including the state-of-the-art 
  HO QCD corrections; includes tree-level off-shell decays and QCD corrections to the  
  loop-induced decays; offers choice among renormalization schemes w/ automatic parameter 
  conversion 

∙

SM

[Krause,MM,’19]

 Based on Fortran code HDECAY:  
  computation of LO decay widths, off-shell decays and loop-induced 2HDM decays including 
  state-of-the-art QCD corrections

∙ [Djouadi,Kalinowski,Spira,’97; Djouadi,Kalinowski,MM,Spira,’18]
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[Krause,MM,Spira,’18] Fortran code 2HDECAY:  
  partial decay widths and branching ratios at one-loop EW and including the state-of-the-art 
  HO QCD corrections; includes tree-level off-shell decays and QCD corrections to the  
  loop-induced decays; offers choice among renormalization schemes w/ automatic parameter 
  conversion 

∙

SM

[Krause,MM,’19]

2HDM
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[Krause,MM,Spira,’18]

 Fortran code HCOUP:  
  various Higgs effective vertices, decay rates, branching ratios at one-loop EW and HO QCD 
  for 2HDM and Higgs singlet model

∙ [Aiko,Kanemura,Kikuchi,Sakurai,Yagyu,’23]

 Fortran code 2HDECAY:  
  partial decay widths and branching ratios at one-loop EW and including the state-of-the-art 
  HO QCD corrections; includes tree-level off-shell decays and QCD corrections to the  
  loop-induced decays; offers choice among renormalization schemes w/ automatic parameter 
  conversion 

∙

 Python code anyH3:  
  one-loop corrections to trilinear SM-like Higgs self-coupling  for any renormalisable  
  model for with arbitrary external momenta values; semi-automotic, flexible renormalisation 
  procedure

∙
λhhh

[Bahl,Braathen,Gabelmann,Weiglein,’23]
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The CP-Violating 2HDM (C2HDM)
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 CP violation: one of the three Sakharov conditions for the generation of the  
                      baryon-anti baryon asymmetry through electroweak baryogenesis
∙

V = m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h . c . ) +

λ1

2 (Φ†
1Φ1)

2
+

λ2

2 (Φ†
2Φ2)

2

+λ3(Φ†
1Φ1)(Φ†

2Φ2) + λ4(Φ†
1Φ2)(Φ†

2Φ1) + [ λ5

2 (Φ†
1Φ2)

2
+ h . c . ]

All parameters are real except for  and : m2
12 λ5 m2

12 = |m2
12 |eiϕ(m2

12) , λ5 = |λ5 |eiϕ(λ5)

 C2HDM Higgs potential: w/ softly broken  symmetry∙ ℤ2

The two complex phases are not independent of each other

[Ginzburg,Krawczyk,Osland,’02]

Ensure CP violation (both phases cannot be removed simultaneously) by choosing:
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 Mass spectrum and mixing: CP violation ~> neutral formerly CP-even (h,H) and CP-odd (A)  
  states mix to mass eigenstates  with indefinite CP quantum number
∙

Hi (i = 1,2,3)

=>

with and

Charged Higgs sector is unchanged.

only two masses are  
independent:

 C2HDM input parameters:   , with  

   and sign of to lift degeneracy from squared couplings
∙ mHi

, mHj
, mH±, Re(m2

12), v, tan β, R23, c2
HiVV, c2

Hitt mHi
≤ mHj

R13

 Allowed amount of CP violation: stringently constrained by EDM measurements∙



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

The CP-Violating 2HDM (C2HDM)
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 Mass spectrum and mixing: CP violation ~> neutral formerly CP-even (h,H) and CP-odd (A)  
  states mix to mass eigenstates  with indefinite CP quantum number
∙

Hi (i = 1,2,3)

=>

with and

Charged Higgs sector is unchanged.

only two masses are  
independent:

 C2HDM input parameters:   , with  

   and sign of to lift degeneracy from squared couplings
∙ mHi

, mHj
, mH±, Re(m2

12), v, tan β, R23, c2
HiVV, c2

Hitt mHi
≤ mHj

R13

 Allowed amount of CP violation: stringently constrained by EDM measurements∙

3 neutral CP-mixed Higgs bosons: ,  
with  
2 charged Higgs bosons: 

H1, H2, H3

mH1
≤ mH2

≤ mH3

H+, H−
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inclusion of limits on CP violation in  coupling  
from LHC  measurement: 

hττ
h125 → ττ αh125ττ < 41∘

Combined fits from LHC run2&3 on Higgs data&searches, new EDM results, data from direct CP-violation  
searches in angular correlations of the ’s in , the bound on  from  constrain possible  
amount of CP-violation: only in the LS case a sizable amount of CP-odd components, , is still 
allowed, where CP violation occurs in the  coupling. The amount is ultimately limited by the LHC  
measurements of 

τ h125 → ττ mH± b → sγ
|co | ≈ |ce |

h125ττ
αh125ττ

[Biekötter,Fontes,MM,Romão,Santos,Silva,’24]

The dark red points obey the currently strongest limit on the eEDM 4.1 × 10−30 e.cm reported by JILA [60].
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C2HDM Higgs Decay Widths
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[Fontes,MM,Romão,Santos,Silva,Wittbrodt,’17]

 Fortran code C2HDM_HDECAY: partial decay widths and branching ratios in the CP-violating 
  2HDM including off-shell decays, loop-induced decays and state-of-the-art higher-order 
  QCD correction

∙
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The Next-to-2HDM (N2HDM)

114

[Chen,Freid,Sher,’14] [MM,Sampaio,Santos,Wittbrodt,’16] The N2HDM: based on the CP-conserving 2HDM  
   w/ a softly broken  symmetry, extended by a real singlet field 
∙

ℤ2 ΦS

  Motivation:∙
- enlarged Higgs sector ~> rich phenomenology 
- study effect of singlet admixture 
- rich vacuum structure (possibility of strong first order phase transition) 
- possible Dark Matter candidate
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The Next-to-2HDM (N2HDM)
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[Chen,Freid,Sher,’14] [MM,Sampaio,Santos,Wittbrodt,’16] The N2HDM: based on the CP-conserving 2HDM  
   w/ a softly broken  symmetry, extended by a real singlet field 
∙

ℤ2 ΦS

 The tree-level potential:∙

invariant under two discrete symmetries: 

:ℤ2

:ℤ′ 2

(softly broken)

 After EWSB:∙

} 2HDM 
structure
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The Next-to-2HDM (N2HDM)
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 Higgs spectrum and mixing angles: charged ( ) and pseudoscalar (A) sector unchanged, 
  three neutral scalar field  mix to Higgs mass eigenstates 
∙ H±

ρ1, ρ2, ρS Hi (i = 1,2,3)

with

and

 N2HDM input parameters:  ∙ mH1,2,3
, mA, mH±, m2

12, α1, α2, α3, v, tan β

 FCNCs at tree-level: avoided by extending  symmetry to Yukawa sector ~> 4 N2HDM  
   types analogously to the 2HDM 
 
 
   e.g. Yukawa coupling modification  
    factors of the N2HDM Hi Higgs  
    bosons w.r.t. the corresponding 
    SM coupling

∙ ℤ2

[MM,Sampaio,Santos,Wittbrodt,1612.01309]
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 Higgs spectrum and mixing angles: charged ( ) and pseudoscalar (A) sector unchanged, 
  three neutral scalar field  mix to Higgs mass eigenstates 
∙ H±

ρ1, ρ2, ρS Hi (i = 1,2,3)

with

and

 N2HDM input parameters:  ∙ mH1,2,3
, mA, mH±, m2

12, α1, α2, α3, v, tan β

 FCNCs at tree-level: avoided by extending  symmetry to Yukawa sector ~> 4 N2HDM  
   types analogously to the 2HDM 
 
 
   e.g. Yukawa coupling modification  
    factors of the N2HDM Hi Higgs  
    bosons w.r.t. the corresponding 
    SM coupling

∙ ℤ2

[MM,Sampaio,Santos,Wittbrodt,1612.01309]

3 neutral CP-mixed Higgs bosons: ,  
with  

1 neutral CP-odd Higgs boson  
2 charged Higgs bosons: 

H1, H2, H3

mH1
≤ mH2

≤ mH3

A
H+, H−
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Theory Constraints
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 More on the N2HDM potential minimum structure: ∙ [Ferreira,MM,Santos,Weiglein,Wittbrodt,1905.1023]

 Theoretical constraints: tree-level perturbative unitarity, boundedness from below, 
   global minimum; for details, cf. [MM,Sampaio,Santos,Wittbrodt,1612.01309]

∙

- First normal stationary point : both doublet w/ non-zero real VEV, singlet VEV=0 =>  
  preserved; singlet does not mix w/ remaining scalars ~> DM phase

𝒩 ℤ′ 2

- Second normal stationary point s: both doublet and singlet w/ non-zero real VEV =>  
  broken; singlet mixes w/ the remaining scalars

𝒩 ℤ′ 2

- Stationary point S: doublets do not acquire VEV, only singlet has non-zero VEV ~> EW gauge 
   bosons and fermions massless ~> unphysical

- Analogously first and second charge-breaking, resp. CP-breaking stationary points

- Further possibilities: existence of multiple minima of types , s or S, also panic vacuum!𝒩 𝒩
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Interplay Vacuum Stability and Collider Observables
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[Ferreira,MM,Santos,Weiglein,Wittbrodt,1905.1023]

Possible vacua in the Next-to-Minimal 2-Higgs-Doublet Model (N2HDM)

Note: Vacuum structure will be changed through higher-order correction!

μγγ =
(σ(H )BR(H → γγ))N2HDM

σ(H )BR(H → γγ))SM
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Interplay Vacuum Stability and Collider Observables

119

[Ferreira,MM,Santos,Weiglein,Wittbrodt,1905.1023]

Possible vacua in the Next-to-Minimal 2-Higgs-Doublet Model (N2HDM)

Note: Vacuum structure will be changed through higher-order correction!

μγγ =
(σ(H )BR(H → γγ))N2HDM

σ(H )BR(H → γγ))SM
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The Dark Phases of the N2HDM
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 Discrete symmetries: If both symmetries∙
:ℤ2 :ℤ′ 2

are exact ~> DM candidates; tree-level potential (no ):m2
12

Broken Phase (BP): doublets+singlet non-
zero VeVs; ,  spont. broken ~> 
no DM candidates

ℤ2 ℤ′ 2

Dark Doublet Phase (DDP): one doublet+singlet non-
zero VeVs;  exact,  spont. broken ~> 4 dark sector 
particles ( ), 2 visible particles ( )

ℤ2 ℤ′ 2
AD, HD, H±

D H1, H2

Dark Singlet Phase (DSP): both doublets  
non-zero VeVs, singlet zero VEWV;   
unbroken ~> 1 DM sector particle ( ),  
5 visible particles ( )

ℤ′ 2
HD

H1, H2, A, H±

Fully Dark Phase (FDP): only one doublet non-zero VeV; 
 and  exact ~> visible SM Higgs ( ), dark 

particles ( )
ℤ2 ℤ′ 2 HSM

HD
D , HS

D, AD, H±
D
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Impact on DM Observables - Relic Density

121

[Engeln,Ferreira,MM,Santos,Wittbrodt,2004.05382]
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Interplay with Collider Observables

122

[Engeln,Ferreira,MM,Santos,Wittbrodt,2004.05382]

Visible  always suppress  compared to the SM;  have more freedom in their couplings ~> enhance or suppress rate 

=>  measurement could exclude BP, DSP

H± μγγ H±
D

μγγ

μγγ =
(σ(H )BR(H → γγ))N2HDM

σ(H )BR(H → γγ))SM
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Program Codes for the N2HDM Decays
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[Engeln,MM,Wittbrodt,’18]

 Fortran code ewN2HDECAY: computation of the one-loop EW corrections to the N2HDM 
  on-shell Higgs decays including the state-of-the-art HO QCD corrections (not for the  
  dark phases)

∙

 Fortran code N2HDECAY: computation of the N2HDM branching ratios and decay widths 
  including state-of-the-art QCD corrections and off-shell decays; also for the dark phases 
  of the N2HDM

∙

 Computation of the mu values: requires computation of the production cross sections  
  (obtained from SM/MSSM results by multiplying w/ the appropriate coupling modification 
  factors) and the decay widths:

∙

[Krause,MM,’19]
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Program Codes for the N2HDM Decays
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 Fortran code ewN2HDECAY: computation of the one-loop EW corrections to the N2HDM 
  on-shell Higgs decays including the state-of-the-art HO QCD corrections (not for the  
  dark phases)

∙
[Krause,MM,’19]

[Krause,MM,1912.03948]
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N2HDM Higgs Portal to DM

125

 Dark Doublet Phase of the N2HDM: one doublet ( ) and singlet ( ) acquire VEV ~>  
    ( ) unbroken (broken) (≙ extension of the inert 2HDM) ~>  
   spectrum; visible; , dark sector: : lighter of the  is the DM candidate 
  

∙ Φ1 ΦS

ℤ2 ℤ′ 2

H1, H2 HD, AD, H± HD, AD

[Azevedo,Gabriel,MM,Sakurai,Santos,2104.03184]

 LHC search for DM particles: Higgs decay into DM, ∙ H1/H2 → DM DM
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NLO EW Corrections to Higgs  DM DM→

126

[Azevedo,Gabriel,MM,Sakurai,Santos,2104.03184]

Experimental bound on invisible branching ratio:  
OS proc. scheme: most stable renormalization scheme; large corrections appear  
for very small LO BR below LHC sensitivity

BRinv = 0.11

 GeV                                                      GeVmH1
= 125 mH2

= 125
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NLO EW Corrections to Higgs  DM DM→

127

[Azevedo,Gabriel,MM,Sakurai,Santos,2104.03184]

Experimental bound on invisible branching ratio:  
OS proc. scheme: most stable renormalization scheme; large corrections appear  
for very small LO BR below LHC sensitivity

BRinv = 0.11

 GeV                                                      GeVmH1
= 125 mH2

= 125

 at frontier between 
indirect constraint from Higgs 
couplings and direct constraint  
from Higgs-to-invisible decay ~> 
EW corr. to  required

BRinv = 0.11

BRinv
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Supersymmetry
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Supersymmetry Motivation

129

✦ Supersymmetry: relates bosons  fermions:                                                                                          ↔

(i) maximal symmetry of the S matrix compatible with Poincaré group (space-time symmetry)

✦ Motivation: 

(ii) Hierarchy problem
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Hierarchy Problem
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If SUSY is exact (unbroken), then  ~> no log divergence leftmF = mϕ
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Motivation

132

(iii) Higgs mechanism generated via radiative corrections (for  GeV)                  Tmt ∼ 100...200 →

(iv) Unification of elm + weak + strong couplings                                                                      T→

(v) Cold Dark Matter (CDM): If SUSY particles assigned conserved multiplicative quantum 
      number,                                                                    

(vi) Local SUSY: enforces gravity                                                        
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Radiative Generation of Higgs Mechanism

133



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

Gauge Coupling Unification

134



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

Gauge Coupling Unification

135



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

Supersymmetry - MSSM

136

1) Doubling of particle spectrum, enlarged Higgs sector 
2) Equal coupling constants in the fermionic ~ bosonic couplings 
3) mSM ∼ 𝒪(100 GeV ⇒ mϕ ≡ m̃ ≤ 𝒪(1 TeV)

Low-energy Supersymmetry:

SM alone cannot be formulated as SUSY theory ⇒

 Doubling of particle spectrum: SM+SUSY partner→

✦ Minimal Supersymmetric Standard Model (MSSM):                                                                                        

✦ Interactions:                                                                                        
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MSSM Particle Content
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✦ Higgs sector: Give masses to up- and down-type quarks + anomaly-free theory  left-chiral 
superfield  with hypercharge  and left-chiral superfield  with  
 

                                                                                                                              

⇒
Ĥ2 Y = + 1 Ĥ1 Y = − 1

Ĥ2 = (ĥ+
2 , ĥ0

2)
T , Ĥ1 = (ĥ0*

1 , − ĥ−
1 )T

✦ Matter- and Higgs-superfield and particle content of the MSSM:                                                                                        

✦ Gauge-superfield and particle content of the MSSM:                                                                                        
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MSSM Higgs Sector
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 MSSM Higgs potential: CP conservation∙

VHiggs = (m2
H1

+ |μ |2 ) |H1 |2 + (m2
H2

+ |μ |2 ) |H2 |2 − Bμϵij(Hi
1H

j
2 + h . c.)

+
g2 + g′ 2

8
[ |H1 |2 − |H2 |2 ]2 +

g2

2
|H†

1 H2 |2

2 complex Higgs doublets

g, g’: SU(2) and U(1) couplings,  higgsino parameter,  arises from the soft SUSY  
breaking Lagrangian

μ Bμ

 EWSB: charged components do not acquire VEV ~> EM symmetry unbroken; require  
   compatibility w/ the phenomenology of the EWSB 
∙

SU(2)L × U(1)Y → U(1)em

with ,

Insert expansion of Higgs doublets around EW minimum in Higgs potential, extract terms 
bilinear in the fields ~> mass matrices ~> diagonalization ~> Higgs mass eigenstates
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MSSM Higgs Sector
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 MSSM Higgs spectrum and masses: CP conservation∙

Tree-level masses:

 Remarks: 
  - light Higgs mass  given in terms of the gauge couplings ( ) ~> no hierarchy 
    problem (Higgs quartic couplings in potential are given in terms of the gauge couplings!) 

  - at tree-level:  ~> higher-order corrections to Higgs mass are crucial to shift 
    Higgs mass to the measured 125 GeV 

  - tree-level MSSM Higgs sector can be parametrized by only 2 parameters, usually chosen 
    to be: 

∙
mh Bμ ∼ 𝒪(mZ)

Mh < mZ

mA, tan β

2 neutral CP-even Higgs bosons: h and H, with  
1 neutral CP-odd Higgs boson: A 
2 charged Higgs bosons: 

mh ≤ mH

H+, H−

,

mixing angles:  diagonalizes CP-odd & charged sector,  diagonalizes neutral CP-even sectorβ α

~>
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MSSM Higgs Sector

140

 MSSM Higgs potential: CP conservation∙

VHiggs = (m2
H1

+ |μ |2 ) |H1 |2 + (m2
H2

+ |μ |2 ) |H2 |2 − Bμϵij(Hi
1H

j
2 + h . c.)

+
g2 + g′ 2

8
[ |H1 |2 − |H2 |2 ]2 +

g2

2
|H†

1 H2 |2

2 complex Higgs doublets

g, g’: SU(2) and U(1) couplings,  higgsino parameter,  arises from the soft SUSY  
breaking Lagrangian

μ Bμ

 EWSB: charged components do not acquire VEV ~> EM symmetry unbroken; require  
   compatibility w/ the phenomenology of the EWSB 
∙

SU(2)L × U(1)Y → U(1)em

with ,

Insert expansion of Higgs doublets around EW minimum in Higgs potential, extract terms 
bilinear in the fields ~> mass matrices ~> diagonalization ~> Higgs mass eigenstates

A word on SUSY breaking: 

We have not discovered any SUSY particles yet 
~> SM and SUSY masses cannot be equal 
~> SUSY is softly broken (as couplings are kept equal) 
 
We do not know the exact SUSY breaking mechanism 
~> parametrize our ignorance through soft-SUSY  
breaking Lagrangian

[Girardello,Grisaru]
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MSSM Higgs Sector
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including HO corrections
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MSSM Higgs Boson Masses

142

Upper bound on   
for : decoupling limit w/ SM-like light Higgs and all other Higgs bosons heavy

Mh
MA ≫ MZ
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The Next-to Minimal Supersymmetric SM(NMSSM)

144

 The NMSSM: extension of MSSM Higgs sector by complex singlet field∙

 Motivation: 
   - solution of the  problem 
   - less tension to shift the SM-like Higgs mass to 125 GeV (tree-level mass has additional 
     contribution 
   - enlarged Higgs sector ~> interesting phenomenology (e.g. Higgs-to-Higgs cascade  
     decays (e.g. , ) 
   - CP-violation at tree-level possible in the Higgs sector 
   - Cancellations in the various EDM contributions ~> more sizable CP violation still possible

∙
μ

Hi → HjHj → (HkHk)(HkHk) mHi
≥ 2mHj

≥ 2mHk

[King,MM,Nevzorov,Walz,’15]

 Review articles:  
  - U. Ellwanger, A. Teixeira, Phys.Rept.496(2010)1, arXiv:0910.1785[hep-ph] 
   - M. Maniatis, Int.J.Mod.Phys.A25(2010),3505, arXiv:0906.0777[hep-ph]

∙
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The NMSSM Higgs Sector
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The Higgs Spectrum

146

✦ Tree-level Higgs potential: (neglecting D-term contributions)                                                                                            
  

   CP-conserving (CPC): 3 CP-even Higgs bosons Hi (i=1,2,3),  
                                    2 CP-odd Higgs boson Aj (j=1,2),  
                                    2 charged H+,H-  

   

   CP-violating (CPV):    5 CP-mixing Higgs bosons Hk (k=1,…,5),  
                                    2 charged Higgs bosons H+, H-

✦ Higgs boson mass: 

* SM: fundamental parameter, not predicted by the theory 

* Supersymmetry: calculable from input parameters; 
quantum corrections ∆m2H are important! 

MSSM: 
  

NMSSM:

✦ NMSSM: less important loop corrections needed compared to the MSSM

✦ Why precision predictions for Higgs masses?for conclusions on allowed parameter values

compare calculated value w/ 125 GeV ⇒ indirect constraint of viable BSM parameter space!
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Spectrum Calculations

147

Methods for Higgs mass calculations: fixed-order (FO) - effective field theory (EFT) - hybrid 

full (N)MSSM perturb.  
series truncated at  

fixed order 
reliable for not too 
heavy SUSY masses

some very heavy 
SUSY masses: 

large logarithms 
require  

resummation

combines virtues 
of  

fixed order  
and EFT  

calculation

Fixed-Order Calculations: exp. exclusion limits push SUSY masses to high scales 
~> terms ~ yx ln(MSx/Mx) with yx Yukawa coupling, Mx (MSx) mass of (SUSY partner) particle 
most important contribution from top/stop sector ~> large hierarchy~> large logs ~> resummation! 
needed for reliable results

EFT calculations: full theory matched to to effective low-energy theory at high-scale;  
RGE running from high scale to EW scale resums large logs
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Spectrum Calculations
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Methods for Higgs mass calculations: fixed-order (FO) - effective field theory (EFT) - hybrid 

full (N)MSSM perturb.  
series truncated at  

fixed order 
reliable for not too 
heavy SUSY masses

some very heavy 
SUSY masses: 

large logarithms 
require  

resummation

combines virtues 
of  

fixed order  
and EFT  

calculation

Status MSSM spectrum calculations:  
FO: up to 2-loop in on-shell (OS) and DR scheme, partial 3-loop in DR scheme 
EFT: up to N2LL (included in calculators), N3LL 
Hybrid: FeynHiggs, FlexibleEFTHiggs, N3LO+N3LL QCD corrections 

Status NMSSM spectrum calculations:  
FO: up to 2-loop in mixed OS-DR scheme and in DR-scheme 

   EFT: matching to quartic coupling in NMSSM w/ all BSM particles at TeV scale  
   e.g. [Gabelmann,MM,Staub,´18,´19][Bagnaschi eal,´22] 
   Hybrid: FlexibleEFTHiggs, SARAH+SPheno
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NMSSM Spectrum Calculators
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- FlexibleSUSY [Athron,Bach,Harries,Kotlarski,Kwasnitza,Park,Stöckinger,Voigt,Ziebell]: DR, FO & hybrid,  
      through FlexibleEFTHiggs 

- NMSSMCALC:[Baglio,Borschensky,Dao,Gabelmann,Gröber,Krause,Le,MM,Rzehak,Spira,Streicher,Walz]: 
   FO, real & complex NMSSM, DR and mixed OS-DR  
- NMSSMTools [Ellwanger,Gunion,Hugonie]: FO, DR scheme 
- SOFTSUSY [Allanach,Athron,Bednyakov,Tunstall,Voig,RuizdeAustri,Williams]: FO, DR scheme 

- SPheno [Porod,Staub]: FO, DR scheme                                                                               

Remarks: 
- comparison of codes in DR scheme: [Staub,Athron,Ellwanger,Gröber,MM,Slavich,Voigt,’15] 
  FlexibleSUSY,NMSSMCALC,NMSSMTools, SOFTSUSY,SPheno 

- comparison of codes in mixed OS-DR scheme: [Drechsel,Gröber,Heinemeyer,MM,Rzehak,Weiglein,’16] 
  FeynHiggs, NMSSMCALC 
- solution of Goldstone boson catastrophe [Braathen,Goodsell,´16], [Braathen,Goodsell,Staub,’17] 
- advances in FeynHiggs: [Drechsel,Galeta,Heinemeyer,Hollik,Liebler,Moortgat-Pick,Paßehr,Weiglein]  

   real&complex NMSSM, GNMSSM: 1-loop in, 2-loop&resummation of HO log-effects only in  
  MSSM limit, no public code yet  

- OS masses CP-violating NMSSM, consistent description production/decay [Domingo,Drechsel,Paßehr]
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The Code NMSSMCALC
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Commercial BreakImplementation of mass corrections in our code NMSSMCALC 
[Baglio,Borschensky,Dao,Gabelmann,Gröber,Krause,MM,Le,Rzehak,Spira,Streicher,Walz]

One-loop masses [Ender,Graf,MM,Rzehak,’12], [Graf,Gröber,MM.Rzehak,Walz,’12] 
Two-Loop 𝓞(𝞪t𝞪s) [MM,Nhung,Rzehak,Walz,’15] 
Two-Loop 𝓞(𝞪t+𝞪t𝞪s) [Dao,Gröber,Krause,MM,Rzehak,’19] 

Two-Loop 𝓞((𝞪t+𝞪𝞴+𝞪𝞳)2 + 𝞪t𝞪s) [Dao,Gabelmann,MM,Rzehak,’21]

The Fortran Code NMSSMCALC: 
  - Calculator of one- and two-loop Higgs mass corrections and Higgs self-couplings as well 

as of Higgs decay widths in the CP-conserving and CP-violating NMSSM 
  - Computation of the muon magnetic and the electric dipole moment 

  - Computation of the rho parameter and the W mass prediction up to two-loop EW NMSSM
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𝓞(𝛼new2)≡𝓞((𝛼𝛌+𝛼𝛋+𝛼t)2+𝛼t𝛼s) Mass Corrections in the CP-Violating NMSSM 
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Corrections to hu-like Higgs (≙SM-like Higgs)                                [Dao,Gabelmann,MM,Rzehak,’21]

: remaining theoretical error: 𝓞(few%)
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Corrections to hu-like Higgs (≙SM-like Higgs)                                [Dao,Gabelmann,MM,Rzehak,’21]

: remaining theoretical error: 𝓞(few%)

NMSSM specific 
couplings 𝝺, 𝝹 
related to new 
singlet field 
in superpotential
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Corrections to hu-like Higgs (≙SM-like Higgs)                                [Dao,Gabelmann,MM,Rzehak,’21]

: remaining theoretical error: 𝓞(few%)

Zoomed: 
compatible w/ 
HiggsSignals after 
including the new 
correction
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𝓞(𝛼new2)≡𝓞((𝛼𝛌+𝛼𝛋+𝛼t)2+𝛼t𝛼s) Mass Corrections in the CP-Violating NMSSM 
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Corrections to hu-like Higgs (≙SM-like Higgs)                                [Dao,Gabelmann,MM,Rzehak,’21]

: remaining theoretical error: 𝓞(few%)

Zoomed: 
compatible w/ 
HiggsSignals after 
including the new 
correction

allowed 𝞴 range



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

Spectrum Calculations - EFT Approach

155

Methods for Higgs mass calculations: fixed-order (FO) - effective field theory (EFT) - hybrid 

full (N)MSSM perturb.  
series truncated at  

fixed order 
reliable for not too 
heavy SUSY masses

some very heavy 
SUSY masses: 

large logarithms 
require  

resummation

combines virtues 
of  

fixed order  
and EFT  

calculation

EFT calculations, Matching: 
   

- SUSY couplings matched to corresponding couplings in EFT theory such that physics at  
   matching scale 𝛍R is the same  
- In case we have only SM particles plus heavy SUSY particles:  
   EFT is the SM => 𝛌SM(𝛍R) = 𝛌BSM(𝛍R) [receives only BSM contributions] 
- We have terms like yx ln(MSx/Mx), respectively yx ( ln(MSx/𝛍R2) + ln(𝛍R2/Mx2) ), with 𝛍R=MSx => 
   yx ln(𝛍R2/Mx2) <= resummed via RGEs for yx
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Quartic Coupling Matching

156



M.M. Mühlleitner, KIT                                              PRE-SUSY 2024

Pole Mass Matching
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Results

158

[Borschensky,Dao,Gabelmann,MM,Rzehak]
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Results

159

[Borschensky,Dao,Gabelmann,MM,Rzehak]

Singlet-like 
Higgs mass PRELIMINARY

EFT: quartic  
cplg. matching

hybrid: pole 
mass matching

contains terms 
v/MSUSY

SM mass value

red band:  
uncertainty
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Trilinear Higgs Self-Coupling
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Trilinear Higgs Self-Coupling at 2L  𝒪(αt(αs + αt))
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Trilinear Higgs Self-Coupling at 2L  𝒪(αt(αs + αt))
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Trilinear Higgs Self-Coupling at 2L  𝒪(αt(αs + αt))

163

Parameter  
scan points  
compatible 
with applied  
constraints
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Size of Corrections at 2L 𝒪(αt(αs + αt))
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Impact on Higgs Pair Production
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Impact on Higgs Pair Production

166

di-Higgs can 
dominated by 
resonant h2 

production w/ 
h2->huhu
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Impact on Higgs Pair Production
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Measuring EWSB
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Trilinear Higgs Self-Coupling

169

We must  measure the  Higgs  potential, i.e.  self-couplings

❖ SM Higgs potential: in physical gauge

❖ Importance of the trilinear Higgs self-coupling:

- Determines shape of the Higgs potential 
- Sensitive to beyond-SM physics 
- Important input for electroweak phase transition*

*matter-asymmetry 
  through electroweak 
  baryogenesis
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Trilinear Higgs Self-Coupling

170

We must  measure the  Higgs  potential, i.e.  self-couplings

❖ SM Higgs potential: in physical gauge

❖ Importance of the trilinear Higgs self-coupling:

- Determines shape of the Higgs potential 
- Sensitive to beyond-SM physics 
- Important input for electroweak phase transition*

*matter-asymmetry 
  through electroweak 
  baryogenesis

Ultimate 
test Higgs 
Mechanism

New  
Physics

Matter- 
Antimatter 
Asymmetry

Evolution 
of  

Cosmos
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Higgs Pair Production through Gluon Fusion

171

✦ Loop mediated at leading order - SM: third generation dominant

✦ Threshold region sensitive to 𝛌; large MHH: sensitive to ctt/cbb [e.g. boosted Higgs pairs]

[Baglio,Djouadi,Gröber,MM,Quévillon,Spira]

decreasing with MHH
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New Physics Effects in Higgs Pair Production

172
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Overview on BSM Higgs Pair Production

173

Overview of Higgs Pair production possibilities 
including theoretical and experimental constraints 

in archetypical BSM Higgs sectors 
including different symmetries

provide benchmark points / lines / planes 
for experiment
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Investigated Models
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Investigated Models
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SFOEWPT
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How Define Resonant Di-Higgs Production?

176

* Distinction resonant/non-resonant: if cross section** more than 10% of total di-Higgs result ~> resonant limits

**
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Impact of Resonant Searches

177

[Abouabid, Arhrib,Azevedo,El Falaki, Ferreira, MM,Santos,´21]
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Impact of Non-Resonant Searches

178

[Abouabid, Arhrib,Azevedo,El Falaki, Ferreira, MM,Santos,´21]
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Maximum Cross Section Values-Resonant Production

179

[Abouabid, Arhrib,Azevedo,El Falaki, Ferreira, MM,Santos,´21]
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Ranges of Trilinear Higgs Couplings

180

[Abouabid, Arhrib,Azevedo,El Falaki, Ferreira, MM,Santos,´21]

Large values 
of  required 
for SFOEWPT!

λ3HSM
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Interplay Top-Yukawa — Higgs Self-Coupling

181

[Abouabid, Arhrib,Azevedo,El Falaki, Ferreira, MM,Santos,´21]

Experiments provide limits on  assuming SM top Yukawa coupling! But  still possible!λHHH yt ± 10 %

Full line: 
SM HH production 
as function of  
 variation 

Dashed lines:  
 variation

λ

yt ± 10 %

factor 2: roughly account  
for NLO QCD corrections 
HPAIR version with  
NLO QCD corrections in  
heavy top limit available 
[Dao,MM,Streicher,Walz,’13]
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Di-Higgs Beats Single Higgs
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Di-Higgs Beats Single Higgs
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Comparison with EFT
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2HDM versus EFT

185

[Abouabid, Arhrib,Azevedo,El Falaki, Ferreira, MM,Santos,´21]
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N2HDM versus EFT

186

[Abouabid, Arhrib,Azevedo,El Falaki, Ferreira, MM,Santos,´21]
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HL-LHC Sensititivty to BSM λhhH

187

- Differential distribution required to disentangle the various NP effects in hh production

hi = h, H

[Arco,Heinemeyer,MM,Radchenko,’23]
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HL-LHC Sensititivty to BSM λhhH

188

Depending on the scenario, a resonant H contribution to di-Higgs production can leave possibly visible  
effects in the  distributionmhh

[Arco,Heinemeyer,MM,Radchenko,’22]
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Loop Corrections, Interference Effects and Experimental Limits

189

Exclusion limits obtained for the resonant di-Higgs searches by ATLAS and CMS may be too  
optimistic in view of the possible modifications in the invariant mass distribution in realistic 
scenarios, when all relevant contributions are taken into account.

[Heinemeyer,MM,Radchenko,Weiglein,’23]
loop corrections to  lift 
destructive interference 

structure present  
at threshold at tree level

κλ
loop and interference effect: pronounced resonant  
peak ~> overall smoothly  distribution w/ just  

a small modulation at  
mhh

mhh ≈ mH
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Link To Slides
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https://www.itp.kit.edu/~maggie/pre-susy24



Thank you for 
your attention!
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Baryogenesis in a Nutshell
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