Physics at future Lepton Colliders

G. Moortgat-Pick (Uni Hamburg/DESY)

Physics at future Lepton Colliders

• Lecture 1

- Basics
- Overview about Higgs, BSM physics at a Lepton Collider
- Simultaneous polarization of e- and e+ beams
- Lecture 2
 - Summary of longitudinally and transversely polarized beams
 - Higgs (couplings, wisth, self couplings, CP) at cms=250, 350 and 500 GeV
 - Top quark (mass, Yukawa coupling) at cms=350 and 500 GeV
 - Overview about BSM models, example Supersymmetry

• Lecture 3

- High precision observables
- GigaZ
- Overview future Lepton and Hadron Collider Proposals
- Lecture 4
 - Technical details (Accelerator, R&D) of a Linear Collider
 - ILC: Status and polarized positron source, prototypes
 - Overview about HALHF concept, adaltion of ILC undulator-based e⁺ source

Lecture 1

pre-SUSY@Madrid, June 2024

'Big' questions and poss	ible answers
 Shortcomings of the Standard Model 	
 Establish electroweak symmetry breaking 	LC
•Hierarchy problem?	LHC, LC
•Unification of all interactions?	LC
•Embedding of gravity in field theory?	cosmo,LHC, LC
 Baryon asymmetry in Universe? 	v-, cosmo, LHC, LC
 Content of dark matter 	v-, cosmo, LHC, LC
 Neutrino mixing and masses 	v-, cosmo-exp.
 Goal of a Linear Collider? 	
observe, determine and precisely	reveal the structure
of the underlying physics model !	

pre-SUSY@Madrid, June 2024

Large Hadron Collider: proton-proton

• LHC: 27 km ring = former LEP, e+e-

pre-SUSY@Madrid, June 2024

e+e- versus pp

- Simple particles
- Well defined: energy, angular mom.
- E can be tuned precisely
- Particles produced
 ~ democratically
- Final states generally fully reconstructable

Characteristics of pp collider composite particles collide E(CM) < 2 E(beam)strong interaction in initial state superposition with spectator jets LHC: $\sqrt{s} = 14$ TeV, used $\hat{s} = x_1x_2s$ few TeV small fraction of events analyzed multiple triggers `no' polarization applicable

Large potential for direct discovery

e* • e.

and of the e +e-(γ e, γ γ) collider Pointlike particles collide E(CM) = 2 E(beam) well defined initial state clean final state ILC: $\sqrt{s} = 250$ GeV -- 1 TeV, GigaZ

most events in detector analyzed no triggers required polarized initial beams possible

Large potential for discovery via high precision

Required features

- In order to reveal the structure of the underlying (new) physics:
 - * high energy desirable to reach the scale of new physics
 - * high luminosity needed to get sufficient statistics
 - * high level of experimental flexibility needed
 - high precision measurements needed to get access to the quantum structure

- ⇒ Spin and polarization physics is important
 - access to quantum properties, structure of couplings, etc.

➡ How to exploit spin effects in particle reactions?

Technical features at a LC

- High luminosity envisaged
- Clean experimental environment
 - Iow beamstrahlung, stable energy
- Excellent detector resolution
 - Clean b, c tagging (even charge)
 - т- polarization
 - Large angle covering
- Threshold scans applicable
 - Optimized by precise measurement in continuum
- Polarization of both beams possible

Higgs @ LC

Many processes at different \sqrt{s} needed & accessible

The Linear Collider is crucial in this regard!

pre-SUSY@Madrid, June 2024

Unique sensitivity at a LC: $H \rightarrow$ invisible

Recoil method: Unique potential of the LC

- Only measure Z production and decay
- Precise initial state: Higgs reconstruction independ. of decay

Unique sensitivity at a LC: $H \rightarrow$ invisible

- Dark matter: sizeable deviation to SM predictions possible, even if couplings to gauge bosons and SM fermions are very close to SM
 - If dark matter consists of one or more particles with a mass below ~63 GeV, then the decay of the state at 125 GeV into a dark matter pair is kinematically open!
- Crucial: detection of an invisible decay mode of the 125 GeV-state could be manifestation of BSM physics
 - Direct search for $H \rightarrow$ invisible
 - Suppression of all other branching ratios

> Unique potential: high precision recoil method !

Thresholds: mass measurements at LC

Clean signatures, known initial state, tunable energy:

Determination of mass and spin of $\tilde{\mu}_R$ from production at threshold: [TESLA TDR '01]

 \Rightarrow test of J = 0 hypothesis

• Allows excellent mass measurements !

pre-SUSY@Madrid, June 2024

The LC offers and challenges

- Staged energy approach:
 - √s~240 GeV, `Higgs frontier'
 - \sqrt{s} ~350 GeV, `Top threshold'
 - √s~500 GeV, `Top Yukawa', 'Higgs potential'
 - ($\sqrt{s}=91$ GeV, `EW Precision frontier')
 - √s~1000 GeV, `Higgs potential'
- Polarized beams and threshold scans:
 - impact on 'quality' (and quantity)
 - Something 'new' comp. to LHC analyses
- Highest precision measurements ! Why are these features important?

Remember the past: physics gain of polarized beams

- Past experience:
 - excellent e- polarization ~78% at SLC:
 - led to best single measurement of sin²θ=0.23098±0.00026 on basis of L~10³⁰ cm⁻²s⁻¹ (~600000 Z's)
- Compare with results from unpolarized beams at LEP:
 sin²θ=0.23221±0.00029 but with L~2x10³¹cm⁻²s⁻¹ (~ 17 million Z's)

 Polarization essential for suppression of systematics
 can even compensate order of magnitude in luminosity for specific observables!

Beam polarization at HEP colliders

• Polarization = ensemble of particles with definite helicity $\lambda = -\frac{1}{2}$ left- or $+\frac{1}{2}$ right-handed :

$$\mathcal{P} = \frac{\#N_R - \#N_L}{\#N_R + \#N_L}$$

beam polarization gives access to the couplings and unravels the structure of interactions

Polarized beams at circular e⁻e⁺ colliders:

- Polarization of both beams via Sokolov-Ternov effect

(= spin-flip effect due to synchrotron radiation)

- At LEP (e+e-): massive depolarization effects; low polarization; not used for physics
- At HERA (ep): excellent e⁻ / e⁺ polarization reached, ~50%-70%; spin rotators used to produce longitudinally polarized beams for physics studies

Polarization basis

- Formalism: Use e.g. helicity spinors $u(p,\lambda)$, $v(p,\lambda) \rightarrow density matrix$
- Definition: Basis of Spinvektors s^a , a = 1, 2, 3 with $(s^a p) = 0$: build 'right-hand-system' in the CMS of $e^-(p_1)e^+(p_2) \rightarrow X(p_3)Y(p_4)$ longitudinal Spinvektors: $s^{3\mu}(p_{1,2}) := \frac{1}{m_{1,2}}(|p_{1,2}|, E\hat{p}_{1,2})$

transverse Spinvektors: $s^{2\mu}(p_1) := (0, \vec{p_1} \times \vec{p_3}), \qquad s^{2\mu}(p_2) = s^{2\mu}(p_1)$ $s^{1\mu}(p_1) := (0, \vec{p_1} \times \vec{s}^2(p_1)), \ s^{1\mu}(p_2) = -s^{1\mu}(p_1)$

- Definition: 'left-handed'and 'right-handed' \equiv with respect to \hat{p} If Spinvektor $\vec{s}^3 = \begin{pmatrix} \text{parallel } \vec{p} \\ \text{antiparallel } \vec{p} \end{pmatrix} \equiv \begin{pmatrix} \text{'right-handed': } P > 0 \\ \text{'left-handed': } P < 0 \end{pmatrix}$
- Polarization = ensemble of particles with definite helicity $\lambda = -\frac{1}{2}$ left- or $+\frac{1}{2}$ right-handed :

pre-SUSY@Madrid, June 2024

$$\mathcal{P} = \frac{\#N_R - \#N_L}{\#N_R + \#N_L}$$

Physics: pol.cross sections in general

Polarized cross sections can be subdivided in:

$$\begin{aligned} \sigma_{P_{e^-}P_{e^+}} &= \frac{1}{4} \{ (1+P_{e^-})(1+P_{e^+})\sigma_{\mathrm{RR}} + (1-P_{e^-})(1-P_{e^+})\sigma_{\mathrm{LL}} \\ &+ (1+P_{e^-})(1-P_{e^+})\sigma_{\mathrm{RL}} + (1-P_{e^-})(1+P_{e^+})\sigma_{\mathrm{LR}} \}, \end{aligned}$$

 σ_{RR} , σ_{LL} , σ_{RL} , σ_{LR} are contributions with fully polarized L, R beams.

In case of a vector particle only (LR) and (RL) configurations contribute:

$$\begin{aligned} \sigma_{P_{e^-}P_{e^+}} &= \frac{1+P_{e^-}}{2} \frac{1-P_{e^+}}{2} \sigma_{\mathrm{RL}} + \frac{1-P_{e^-}}{2} \frac{1+P_{e^+}}{2} \sigma_{\mathrm{LR}} \\ &= (1-P_{e^-}P_{e^+}) \frac{\sigma_{\mathrm{RL}} + \sigma_{\mathrm{LR}}}{4} \left[1 - \frac{P_{e^-} - P_{e^+}}{1-P_{e^+}P_{e^-}} \frac{\sigma_{\mathrm{LR}} - \sigma_{\mathrm{RL}}}{\sigma_{\mathrm{LR}} + \sigma_{\mathrm{RL}}} \right] \\ &= (1-P_{e^+}P_{e^-}) \sigma_0 \left[1 - P_{\mathrm{eff}} A_{\mathrm{LR}} \right], \end{aligned}$$

pre-SUSY@Madrid, June 2024

Effective polarization

Effective polarization:

$$P_{\text{eff}} = \frac{P_{e^-} - P_{e^+}}{1 - P_{e^+} P_{e^-}}$$

(80%,60): P_{eff} = 95% (90\%,60\%): P_{eff} = 97% (90\%, 30\%): P_{eff} = 94 %

Relation between
$$P_{eff}$$
 and A_{LR} •How are P_{eff} and A_{LR} related? $A_{LR} = \frac{1}{P_{eff}} A_{LR}^{obs} = \frac{1}{P_{eff}} \frac{\sigma_{-+} - \sigma_{+-}}{\sigma_{-+} + \sigma_{+-}}$ That means: $\left| \frac{\Delta A_{LR}}{A_{LR}} \right| = \left| \frac{\Delta P_{eff}}{P_{eff}} \right|$

•With pure error propagation (and errors uncorrelated), one obtains:

$$\frac{\Delta P_{\text{eff}}}{P_{\text{eff}}} = \frac{x}{\left(|P_{e^+}| + |P_{e^-}|\right) \left(1 + |P_{e^+}||P_{e^-}|\right)} \sqrt{\left(1 - |P_{e^-}|^2\right)^2 P_{e^+}^2 + \left(1 - |P_{e^+}|^2\right)^2 P_{e^-}^2}$$

With
$$x \equiv \Delta P_{e^-}/P_{e^-} = \Delta P_{e^+}/P_{e^+}$$

pre-SUSY@Madrid, June 2024

Gain in accuracy due to P(e+)

Polarization basics

- Longitudinal polarization: $\mathcal{P} = \frac{N_R N_L}{N_R + N_L}$
- Cross section:

$$\sigma(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = \frac{1}{4} \{ (1 + \mathcal{P}_{e^{-}})(1 + \mathcal{P}_{e^{+}})\sigma_{\mathrm{RR}} + (1 - \mathcal{P}_{e^{-}})(1 - \mathcal{P}_{e^{+}})\sigma_{\mathrm{LL}} + (1 + \mathcal{P}_{e^{-}})(1 - \mathcal{P}_{e^{+}})\sigma_{\mathrm{RL}} + (1 - \mathcal{P}_{e^{-}})(1 + \mathcal{P}_{e^{+}})\sigma_{\mathrm{LR}} \}$$

• Unpolarized cross section:

$$\sigma_0 = \frac{1}{4} \{ \sigma_{\rm RR} + \sigma_{\rm LL} + \sigma_{\rm RL} + \sigma_{\rm LR} \}$$

- Left-right asymmetry: $A_{\text{LR}} = \frac{(\sigma_{\text{LR}} \sigma_{\text{RL}})}{(\sigma_{\text{LR}} + \sigma_{\text{RL}})}$
- Effective polarization and luminosity:

$$\mathcal{P}_{\text{eff}} = \frac{\mathcal{P}_{e^-} - \mathcal{P}_{e^+}}{1 - \mathcal{P}_{e^-} \mathcal{P}_{e^+}} \qquad \qquad \mathcal{L}_{\text{eff}} = \frac{1}{2} (1 - \mathcal{P}_{e^-} \mathcal{P}_{e^+}) \mathcal{L}$$

pre-SUSY@Madrid, June 2024

Polarization basics

• Applicable for V,A processes (most SM, some BSM)

 σ (Pe-,Pe+)=(1-Pe- Pe+) σ_{unpol} [1-P_{eff} A_{LR}]

- With both beams polarized we gain in
 - Higher effective polarization (higher effect of polarization)
 - Higher effective luminosity (higher fraction of collisions)

\sqrt{s}	$P(e^{-})$	$P(e^+)$	$P_{ m eff}$	\mathcal{L}_{eff}	$\frac{1}{x}\Delta P_{\rm eff}/P_{\rm eff}$
total range	$\mp 80\%$	0%	$\pm 80\%$	0.5	1
250 GeV	$\mp 80\%$	$\pm 40\%$	$\mp 91\%$	0.65	0.43
$\geq 350~{\rm GeV}$	$\mp 80\%$	$\pm 55\%$	$\mp 94\%$	0.7	0.30

SM Vertices

QED: parity conserved, A=0

Charged currents: A=1 Parity violating only left-handed e⁻ couple Neutral currents: A=0.15 Parity violating left-handed e⁻, right-handed e⁺

SM Processes

25

P(e[±]) sensitive to interaction structure

Definition: Helicity $\lambda = \hat{s} * \hat{p}/|\hat{p}|$ 'projection of spin' Chirality = handedness is equal to helicity only of m=0!

Def.: left-handed $\equiv P(e^{\pm}) < 0$

right-handed $\equiv P(e^{\pm}) > 0$

Annihilation channel:

$$e^+$$

 $J=1$
 $J=0$
 \leftarrow only from RL,LR: SM (γ , Z)
 \leftarrow only from LL,RR: NP!

 \Rightarrow In principle: $P(e^{-})$ fixes also helicity of e^{+} !

Complete fixing of initial state via P(e⁺⁾

Scattering channel: direct access to chirality of final state !

- b) Bhabha scattering
- $\Rightarrow \gamma$, Z exchange in s-channel: selects LR, RL
- $\Rightarrow \gamma$, Z exchange in t-channel: LL,RR possible!

unpolarised	4.50 pb
$P_{e^-} = -80\%$	4.63 pb
$P_{e^-} = -80\%, P_{e^+} = -60\%$	4.69 pb
$P_{e^-} = -80\%, P_{e^+} = +60\%$	4.58 pb

Leff and Peff

• More concrete: If only LR and RL contributions: only 50 % of collisions useful

effective luminosity: $L_{\rm eff}/L = \frac{1}{2}(1 - P_{\rm e} - P_{\rm e})$

This quantity = the effective number of collisions, can only be changed with Pe- and Pe+:

With \pm 80%, \pm 30%, the increase is 24% With \pm 80%, \pm 60%, the increase is 48% With \pm 90%, \pm 60%, the increase is 54% Peff~89%

In other words: *no P*_{e⁺} *means* 24% *more running time* (!) and 10% loss in *P*_{eff} ≙ 10% loss in analyzing power!

Quite substantial in (Higgsstrahlung) and electroweak 2f production !

- allows model-independent access!
- Absolute measurement of Higgs cross section σ (HZ) and g_{HZZ}: crucial input for all further Higgs measurement!
- Allows access to H-> invisible/exotic
- Allows with measurement of Γ^h_{tot} absolute measurement of BRs!

here:

L_{eff} and P_{eff}: further example

• Charged currents, i.e. t-channel W- or v-exchange (A_{LR}=1):

$$\sigma(\mathcal{P}_{e^-}, \mathcal{P}_{e^+}) = 2\sigma_0(\mathcal{L}_{\text{eff}}/\mathcal{L})[1 - \mathcal{P}_{\text{eff}}]$$

In other words: *no P_{e+} means 30% more running time needed* !

Quite substantial in Higgs production via WW-fusion!

Technical remark: why is helicity flipping required?

Gain in effective lumi lost if no flipping available

- 50% spent to 'inefficient' helicity pairing (most SM, BSM)
- Similar flip frequency for both beams ~ pulse-per-pulse
- Gain in △P_{eff} remains, but flipping required to understand:
 - Systematics and correlations P_{e-} x P_{e+}

e.g. Malysheva,L et al.

• Spin rotator before DR and spinflipper has been set-up!

Statistics Suppression of WW and ZZ production

WW, ZZ production = large background for NP searches!

 W^- couples only left-handed:

 \rightarrow WW background strongly suppressed with right polarized beams!

Scaling factor = $\sigma^{pol}/\sigma^{unpol}$ for WW and ZZ:

$P_{e^-}=\mp 80\%,\; P_{e^+}=\pm 60\%$	$e^+e^- \rightarrow W^+W^-$	$e^+e^- \rightarrow ZZ$
(+0)	0.2	0.76
(-0)	1.8	1.25
(+-)	0.1	1.05
(-+)	2.85	1.91

'No lose theorem': scaling factors for signals&background

	S	B	S/B	S/\sqrt{B}
Example 1	$\times 2$	$\times 0.5$	$\times 4$	$\times 2\sqrt{2}$
Example 2	$\times 2$	$\times 2$	Unchanged	$\times \sqrt{2}$

(Some) benefits of simultaneous e+ polarization

- Better Statistics: Less running time/operation cost for same physics
 - higher rates,
 - lower background,
 - higher analyzing power for chosen channels

Lower Systematics

• key role for reduction of systematics originating from polarization measurement

More Observables

- Four distinct data-sets: opposite-site polarization collisions plus like-sign configuration
- unique feature of ILC (including transversely but also unpolarized configurations!)

Polarimetry requirements

- SLC experience: measured ΔP/P=0.5%
 - Compton scattered e- measured in magnetic spectrometer
- Goal at ILC: measure ΔP/P≤0.25%
 - Dedicated Compton polarimeters and Cherenkov detectors
 - Use upstream and downstream polarimeters

- Use also annihilation data: `average polarization'

> Longterm absolute calibration scale, up to $\Delta P/P=0.1\%$

Compton polarimetry at ILC

• Upstream polarimeter: use chicane system

- Can measure individual e± bunches
- Prototype Cherenkov detector tested at ELSA!
- **Downstream polarimeter:** crossing angle required
 - Lumi-weighted polarization (via w/o collision)
 - Spin-tracking simulations required

pre-SUSY@Madrid, June 2024

Polarization measurement

- Compton polarimeters: up- and downstream
 - envisaged uncertainties of ΔP/P=0.25% (at polarimeters!)
 - But that's is not enough for IP!
- Use collision data to derive luminosity-weighted polarization
 - single W, WW, ZZ, Z, etc.: combined fit

 $P_{e^{\pm}}^{-} = -\left|P_{e^{\pm}}\right| + \frac{1}{2}\delta_{e^{\pm}} \qquad \qquad P_{e^{\pm}}^{+} = -\left|P_{e^{\pm}}\right| + \frac{1}{2}\delta_{e^{\pm}}$

e.g. Karl, List et al.

- helicity reversal is important
- non-perfect helicity-reversal can be compensated
- 0.1% accuracy in ΔP/P is achievable at IP!
- NOT achievable without Pe+!

Remember: even if no Pe+ (SLC! dedicated experiment at SLACs Endstation A), the $P_{e+}\sim 0.0007$ had to be derived a posteriori for physics reason!

EW precision measurements@Z-factory

- GigaZ option at the ILC:
 - high-lumi running on Z-pole/WW
 - 10⁹ Z in 50-100 days of running
 - Needs machine changes (e.g. bypass in the current outline)
- Dedicated Z-factory:
 - fraction of GigaZ
 - but strong physics case given already now!
- Both facilities need polarized e⁻ and e⁺ beams
 - − Use of Blondel scheme required to get $\Delta P/P \leq 0.1\%$
- Measurement of e.g. $sin^2\theta_W$ with unprecedented precision achievable!

pre-SUSY@Madrid, June 2024

Gain in masurement of polarization

- Important issue: measuring amount of polarization
 - limiting systematic uncertainty for high statistics measurements
- Compton polarimeters: up- and downstream
 - envisaged uncertainties of ΔP/P=0.25%. Essential for monitoring, but need to correct wrt IP.
- (Differential) Cross-section based in-situ measurements
 - need some physics assumptions
 - often under assumption of perfect helicity reversal
- Adding positron polarization helps in several ways:
 - Providing additional measurements, improving limiting systematics
 - Enhancing effective polarization
 - 'Allow' in-situ measurements: 'ultimate' measurements, but require running time in same-sign configurations

Transversely polarized beams

Transversely polarized beams

- enables to exploit azimuthal asymmetries in fermion production !
- the process $e^+e^- \rightarrow W^+W^-$:
 - \Rightarrow azimuthal asymmetry projects out $W_L^+ W_L^-$
- - ➡ probe leptoquark models
- the process e+e- → ff:
 ⇒ probe extra dimensions
- the construction of CP violating oservables: \Rightarrow matrix elements $|M|^2 \sim C \times \Delta(\alpha) \Delta^*(\beta) \times S(C=\text{coupl.}, \Delta=\text{prop.}, S=\text{momenta})$

if CP violation: contributions of $Im(\mathcal{C}) \times Im(\mathcal{S})$ (e.g. contributions of ϵ tensors!)

- \Rightarrow azimuthal dependence ('not only in scattering plane')
- \Rightarrow observables are e.g. asymmetries of CP-odd quantities: $\vec{p}_a(\vec{p}_b \times \vec{p}_c)$

 $\vec{s}^{2\mu} := \vec{p}_1 \times \vec{p}_3$ perpendicular scattering plane, CP even $\vec{s}^{1\mu} := \vec{p}_1 \times \vec{s}^2(p_1)$ transverse in plane, CP odd

Gudrid Moortgat-Pick

e.g. Fleischer et al,

e.q. Hewett, Rizzo et al.

e.g. Rindani, Poulose, et al.

In general: Interactions and Polarization

• Different Interaction structures:

S=scalar-, P=pseudoscalar-, V=vector-, A=axial-vector-, T=tensor- like interactions

Inter	action structure	Longitu	dinal	Transverse		Longitudinal/Transverse
Γ_k	$\bar{\Gamma}_{\ell}$	Bilinear	Linear	Bilinear	Linear	Interference
S	S	$\sim P_{e^-}P_{e^+}$	_	$\sim P_{e^-}^T P_{e^+}^T$	_	_
S	Р	-	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	-
S	V,A	-	_	_	$\sim P_{e^\pm}^T$	$\sim P_{e^{\pm}} P_{e^{\mp}}^T$
S	Т	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$		-
Р	Р	$\sim P_{e^-}P_{e^+}$	-	$\sim P_{e^-}^T P_{e^+}^T$	_	-
Р	V,A	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^\pm}$	$\sim P_{e^-}^T P_{e^+}^T$	$\sim P_{e^\pm}^T$	$\sim P_{e^{\pm}} P_{e^{\mp}}^T$
Р	Т	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^\pm}$	$\sim P_{e^-}^T P_{e^+}^T$		-
V,A	V,A	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	-
V,A	Т	-	_	_	$\sim P_{e^\pm}^T$	$\sim P_{e^{\pm}} P_{e^{\mp}}^T$
Т	Т	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	_

• dependence on polarization provides information on kind of interaction pre-SUSY@Madrid, June 2024 Gudrid Moortgat-Pick

39

Be prepared for the 'Unexpected'...

\succ the LC +LHC are mandatory.....!

pre-SUSY@Madrid, June 2024