Physics at future Lepton Colliders

G. Moortgat-Pick (Uni Hamburg/DESY)

Lecture 3

pre-SUSY@Madrid, June 2024

What if nothing else than H is found now?

- Since m_H is free parameter in SM at tree level
 - Crucial relations exist, however, between m_{top} , m_W and $sin^2\theta_{eff}$
 - If nothing else appears in the electroweak sector, these relations have to be urgently checked in order to
 - a) distinguish between SM and Higgs in BSM models (remember $\Delta m_{\rm H} \sim m_{\rm top}^4$ in BSM!)
 - b) Close the SM picture ?
- Which strategy should one aim?
 - exploit precision observables and check whether the measured values fit together at quantum level
 - m_Z , m_W , α_{had} , $sin^2\theta_{eff}$ und m_{top}
- Exploit `GigaZ' option: high lumi run at \sqrt{s} = 91 GeV
 - 10⁹ Z in 50-100 days of running

Pe-=80% and Pe+=60% required ! (If only Pe-=90% : precision ~factor 4 less!)

Z-factory: high precision physics at the Z-pole

- Z-boson = carrier of the weak force
- Electroweak theory tested at quantum level via electroweak precision observables
- Clean environment enables also measurements of e.g. α_s
- High sensitivity to effects of new physics

Strong case for new programme of high precision measurements

- GigaZ option at the ILC
- dedicated Z-factory
- Z-run at CEPC, FCC-ee

Experimental situation

Discrepancy between the most precise measurements *Central value has large impact on physics predictions!*

Gudrid Moortgat-Pick

√s=91 GeV

$\sin^2 \theta_{eff}$ at the Z-factory

Measure both A_{FB} and A_{LR} in same experiment !

with improved precision w.r.t. LEP and SLC:

- ALR: large gain from polarization of both beams and higher luminosity
- AFB: gain from higher luminosity, better b-tagging, etc.

resolve unclear situation:

- New physics affecting AFB(b) and ALR(I) in different ways?
- Resolution of experimental discrepancy:
 reliable central value+ improved precision

---> large impact also on interpretation of LHC results ...

Why a 'new' e+e- Z-factory?

• Electroweak precision physics

- Sensitivity to quantum effects of new physics
 - All states contribute, including the ones that are too heavy to be produced directly
 - Probing the underlying physics and the properties of new particles

Impact of high precision observables

Two types of uncertainties

- intrinsic: missing higher order calculations
- parametric: uncertainties due to experimental uncertainties of SM input parameters!
- \rightarrow m_t, m_b, m_H, m_Z, m_W, α_s , $\Delta \alpha_{had}$,....

Electroweak precision observables

- EWPO: α , G_F, M_Z, M_W, Γ _I, sin² θ _{eff}, g_µ-2, ...
 - One example: precise measurement of

 $M_{W} = 80.377 \pm 0.012 \text{ GeV}$

- accuracy of 0.2 ‰
- leading to sensitivity to 1- and 2-loop quantum effects ...
- Previous experimental results at the Z-pole:
 - LEP: very precise measurement of M_Z, Γ_Z, A_{FB}(I), A_{FB}(b,c),...
 - SLD: A_{LR}(e), A_{LR}(μ), ...
- Of particular interest: $sin^2\theta_{eff} = 1 M_W^2/M_Z^2 + loop effects$
 - Determined from A_{FB}, A_{LR}
 - → High sensitivity to effects of new physics !

2. SM parameter determination

- \Rightarrow intrinsic uncertainties
 - 1. M_H : better than 20 MeV \Rightarrow negligible
- 2. M_Z : ~ 0.1 MeV with negligible theory uncertainties \Rightarrow negligible
- 3. $\alpha_s(M_Z)$: from (mainly) R_ℓ $\delta \alpha_s^{\text{exp}} \sim 10^{-4}$, $\delta \alpha_s^{\text{theo}} \sim 1.5 \times 10^{-4}$
- 4. m_t : from threshold scan $\delta m_t^{
 m exp/theo} \lesssim 50 ~
 m MeV$
- 5. m_b : from lattice calculations $\delta m_b \sim 10 \text{ MeV}$
- 6. $\Delta \alpha_{had}$: BES III and Belle II: $\delta(\Delta \alpha_{had}) \sim 5 \times 10^{-5}$ better from measurements "around the Z pole? $\sim 3 \times 10^{-5}$?

pre-SUSY@Madrid, June 2024

2. EWPOs in concrete BSM models

The by far best worked out model: SM

Intrinsic uncertainties:

Quantity	current experimental unc.	current intrinsic unc.	
$M_W \; [{ m MeV}]$	12	4	$(\alpha^3, \alpha^2 \alpha_s)$
$\sin^2 \theta_{\rm eff}^{\ell}$ [10 ⁻⁵]	16	4.7	$(\alpha^3, \alpha^2 \alpha_s)$
Γ_Z [MeV]	2.3	0.5	$(\alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$
R_b [10 ⁻⁵]	66	15	$(\alpha^3, \alpha^2 \alpha_s)$
R_l [10 ⁻³]	25	5	$(\alpha^3, \alpha^2 \alpha_s)$

Parametric uncertainties:

Quantity	$\delta m_t = 0.3 \text{ GeV}$	$\delta(\Delta \alpha_{had}) = 10^{-4}$	$\delta M_Z = 2.1 \; {\rm MeV}$
$\delta M_W^{\sf para}$ [MeV]	5.5	2	2.5
$\delta \sin^2 \theta_{\text{eff}}^{\ell,\text{para}}$ [10 ⁻⁵]	3.0	3.6	1.4

⇒ Current intrinsic/parametric uncertainties are substantially smaller than current experimental uncertainties :-) in the SM!

Effective leptonic mixing angle

• Experimental uncertainty:

Today: LEP, SLD: $\sin^2 \theta_{eff}^{exp} = 0.23153 \pm 0.00016$

GigaZ/TeraZ: both beams polarized, Blondel scheme

 $\delta \sin^2 \theta_{\text{eff}}^{\text{exp,ILC(CEPC...)}} = 13(3) \times 10^{-6} \quad \Leftarrow \text{TU neglected}$

• Theoretical uncertainty [10-6]:

intrinsic today: $\delta \sin^2 \theta_{\text{eff}}^{\text{SM,theo}} = 47$ $\delta \sin^2 \theta_{\text{eff}}^{\text{MSSM,today}} = 50 - 70$ intrinsic future: $\delta \sin^2 \theta_{\text{eff}}^{\text{SM,theo,fut}} = 15$ $\delta \sin^2 \theta_{\text{eff}}^{\text{MSSM,fut}} = 25 - 35$

parametric today: $\delta m_t = 0.3$ GeV, $\delta(\Delta \alpha_{had}) = 10^{-4}$, $\delta M_Z = 2.1$ MeV

 $\delta \sin^2 \theta_{\text{eff}}^{\text{para},m_t} = 30, \quad \delta \sin^2 \theta_{\text{eff}}^{\text{para},\Delta \alpha_{\text{had}}} = 36, \quad \delta \sin^2 \theta_{\text{eff}}^{\text{para},M_Z} = 14$

parametric future: $\delta m_t^{\text{fut}} = 0.05 \text{ GeV}$, $\delta (\Delta \alpha_{\text{had}})^{\text{fut}} = 5 \times 10^{-5}$, $\delta M_Z^{\text{ILC/CEPC}} = 1/0.1 \text{ MeV}$

 $\Delta \sin^2 \theta_{\rm eff}^{\rm para,fut,m_t} = 2, \ \Delta \sin^2 \theta_{\rm eff}^{\rm para,fut,\Delta\alpha_{had}} = 18, \ \Delta \sin^2 \theta_{\rm eff}^{\rm para,fut,M_Z} = 6.5/0.7$

pre-SUSY@Madrid, June 2024

Improvements with the ILC/FCC-ee/CEPC

Experimental errors of the precision observables:

	today	Tev./LHC	ILC/GigaZ	FCC-ee/TeraZ
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	16	15	1.3	0.6
δM_W [MeV]	12	$\lesssim 12$	2-3	0.5
$\delta m_t \; [{ m GeV}]$	0.6	$\lesssim 0.5$	0.05	0.05

 M_W : from direct reconstruction and threshold scan (not taken into account here: M_W^{CDF})

 $\sin^2 \theta_{eff}$: 1/2 year TeraZ/GigaZ run (GigaZ: polarization important)

 α_s : Improvement from GigaZ/TeraZ run

 \Rightarrow no theory uncertainties included \Rightarrow visible effect for FCC-ee/TeraZ

pre-SUSY@Madrid, June 2024

Polarization basics

- Longitudinal polarization: $\mathcal{P} = \frac{N_R N_L}{N_R + N_L}$
- Cross section:

$$\sigma(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = \frac{1}{4} \{ (1 + \mathcal{P}_{e^{-}})(1 + \mathcal{P}_{e^{+}})\sigma_{\mathrm{RR}} + (1 - \mathcal{P}_{e^{-}})(1 - \mathcal{P}_{e^{+}})\sigma_{\mathrm{LL}} + (1 + \mathcal{P}_{e^{-}})(1 - \mathcal{P}_{e^{+}})\sigma_{\mathrm{RL}} + (1 - \mathcal{P}_{e^{-}})(1 + \mathcal{P}_{e^{+}})\sigma_{\mathrm{LR}} \}$$

• Unpolarized cross section:

$$\sigma_0 = \frac{1}{4} \{ \sigma_{\rm RR} + \sigma_{\rm LL} + \sigma_{\rm RL} + \sigma_{\rm LR} \}$$

- Left-right asymmetry: $A_{\text{LR}} = \frac{(\sigma_{\text{LR}} \sigma_{\text{RL}})}{(\sigma_{\text{LR}} + \sigma_{\text{RL}})}$
- Effective polarization and luminosity:

$$\mathcal{P}_{\text{eff}} = \frac{\mathcal{P}_{e^-} - \mathcal{P}_{e^+}}{1 - \mathcal{P}_{e^-} \mathcal{P}_{e^+}} \qquad \qquad \mathcal{L}_{\text{eff}} = \frac{1}{2} (1 - \mathcal{P}_{e^-} \mathcal{P}_{e^+}) \mathcal{L}$$

2024 EU Edition CEPC@Marseille, 10.4.2024

Why is helicity flipping required?Gain in effective lumi lost if no flipping available

e-trains
e-trains

$$\begin{pmatrix} -\\ +\\ +\end{pmatrix} + + + \begin{pmatrix} +\\ +\\ +\end{pmatrix} + + + \begin{pmatrix} -\\ +\\ +\end{pmatrix} + + + \begin{pmatrix} -\\ -\\ -\\ -\end{pmatrix} + - \begin{pmatrix} +\\ +\\ -\end{pmatrix} - + \begin{pmatrix} +\\ -\\ -\\ -\end{pmatrix} + - \begin{pmatrix} +\\ +\\ -\\ -\end{pmatrix} + - \begin{pmatrix} +\\ -\\ -\\ -\end{pmatrix}$$

- 50% spent to 'inefficient' helicity pairing (most SM, BSM)
- Similar flip frequency for both beams ~ pulse-per-pulse
- Gain in △P_{eff} remains, but flipping required to understand:
 - Systematics and correlations P_e x P_e
- Spin rotators needed,.....well experienced at HERA, e.g....!

Why is helicity flipping required?

- With both beams polarized we gain in
 - Higher effective polarization (higher effect of polarization)

 $P_{eff}:=(P_{e_{-}}-P_{e_{+}})/(1-P_{e_{-}}P_{e_{+}})$

• Higher effective luminosity (higher fraction of collisions)

\sqrt{s}	$P(e^{-})$	$P(e^+)$	$P_{ m eff}$	$\mathcal{L}_{\mathrm{eff}}$	$\frac{1}{x}\Delta P_{\rm eff}/P_{\rm eff}$
total range	$\mp 80\%$	0%	$\pm 80\%$	1	1
250 GeV	$\mp 80\%$	$\pm 40\%$	$\mp 91\%$	1.3	0.43
$\geq 350~{\rm GeV}$	$\mp 80\%$	$\pm 55\%$	$\mp 94\%$	1.4	0.30
	04	- 04	04		

Applicable for V,A processes, e.g. @Z=pole (most SM, some BSM)

$$\sigma$$
 (Pe-,Pe+)=(1-Pe- Pe+) σ_{unpol} [1-P_{eff} A_{LR}]

Impact of P(e+)

Statistics

And gain in precision

NO gain with only pol. e- (even if '100% ') !

To close the story... GigaZ $\sqrt{s=91} GeV$

• Measure $\sin^2\theta_{eff}$ via A_{LR} with high precision: $\Delta \sin\theta = 1.3 \ 10^{-5}$

Assume only Higgs@LHC but no hints for SUSY:

- Really SM?

- Help from $\sin^2\theta_{eff}$?
- If GigaZ precision:
 - i.e. Δm_{top}=0.1 GeV...
 - Deviations measurable
- $sin^2\theta_{eff}$ can be the crucial quantity !

telescope to NP!

Gudrid Moortgat-Pick

Heinemeyer, Weber, Weiglein SM_{(M,m} = M,m)</sub>±σ 0.2316

Help in challenging HL-LHC scenarios ?

What else at the Z-factory? $...\alpha_{s}, \Gamma_{l}, R_{b}$

α_s is a key parameter in QCD:

α_s = 0.1180(9) ± 0.0076 (Particle data 2022)

- Big progress via measuring event shapes variables as thrust
- Reduction of uncertainty via higher order calculations and hadronization corrections
- theoretical (SCET) models to reduce non-perturbative uncertainty promising to measure α_s if >10x lumi_{LEP} and better detectors
- Γ_1 : uncertainties in leptonic event selection mainly stat. limited
 - e.g. Moenig '01 – improvements from higher luminosity ≥10xlumi_{LEP} expected
- R_{b,c,e,µ,τ}, A_{b,c,e,µ,τ}: systematically limited
 - exploitation of beam polarization...

Further topics for a Z-factory

- Flavour physics at a Z-factory:
 - about 15% of Z-decays lead to B-hadrons
 - large boost allows good separation of the 2 B's in clean environment
 - large A_{FB} allows tagging of initial state flavour from event axis only
 - unique studies in B_s to check syst. in $|V_{cb}|$, $|V_{ub}|$
 - unique studies in weak decays in polarized beauty hadrons

• Rare Z decays

- study of lepton flavour violating decays with high luminosity

• Z' physics

- realized in many scenarios of new physics
- Sensitivity to mixing between Z and Z'

Irles et al., arXiv: 1905.00220

In many cases detailed studies are still ongoing for a Z-factory...

LC Physics Conclusions

LC offers Physics 'add-ons':

- tuneable energy stages, threshold scans, polarized e[±] beams, offers eγ, γγ-option, large flexibility
- Higgs factory at low energy (250 GeV): precise measurement of the h125 couplings to fermions, gauge bosons, HZ cross section, sensitivity to extended Higgs sector
- at higher energy (350,500 GeV): measurement of the width and top Yukawa coupling and trilinear couplings beyond SM
- exploration of the Higgs potential —> 'structure of Universe'
- Precise measurements e.g. of $m_{t_i} m_W$, $sin^2\theta_{eff}$, SUSY properties,...
- Access to high precision observables
- GigaZ: telescope to NP even at high scales (if m_t known precisely...)

➡ In principle: needed as soon as possible !

pre-SUSY@Madrid, June 2024

courtesy of G. Weiglein

e+e- Higgs factories

pre-SUSY@Madrid, June 2024

courtesy of G. Weiglein Future hadron colliders

Ire colliders, Georg Weiglein, Workshop on Future Accelerators, Corfu, 05 / 2024

Be prepared for the 'Unexpected'...

➤ Great team: LC +LHC are mandatory......!

pre-SUSY@Madrid, June 2024

Lumi scenarios

 Running time based on 20 years physics data, lumi upgrade included after 8 (10) years.....but

T. Barklow ea,:1506.07830

		[2	$\mathcal{L}dt$ [fb ⁻¹]
\sqrt{s}	G-20	H-20	I-20
250 GeV	500	2000	500
350 GeV	200	200	1700
500 GeV	5000	4000	4000

- Most popular 'H-20': but stick to \sqrt{s} =250 GeV....
- Prospects LHC: 300 fb-1 in 2023

HL-LHC: 3000 fb-1 in 2037 (start HL-LHC: 2027)

• Request: 'Physics results improve/complement LHC, HL-LHC results'

	fraction with $sgn(P(e^{-}), P(e^{+})) =$			
	(-,+)	(+,-)	(-,-)	(+,+)
\sqrt{s}	[%]	[%]	[%]	[%]
250 GeV	67.5	22.5	5	5

Compton polarimetry at ILC

• Upstream polarimeter: use chicane system

- Can measure individual e± bunches
- Prototype Cherenkov detector tested at ELSA!
- Downstream polarimeter: crossing angle required
 - Lumi-weighted polarization (via w/o collision)
 - Spin-tracking simulations required

pre-SUSY@Madrid, June 2024

Polarimetry requirements

- SLC experience: measured ΔP/P=0.5%
 - Compton scattered e- measured in magnetic spectrometer
- Goal at ILC: measure ΔP/P≤0.25%
 - Dedicated Compton polarimeters and Cherenkov detectors
 - Use upstream and downstream polarimeters

- Use also annihilation data: `average polarization'

> Longterm absolute calibration scale, up to $\Delta P/P=0.1\%$

Free Parameters in the MSSM

- mass matrices are 3 x 3 hermitian
 - \longrightarrow m_Q^2 , m_u^2 , m_d^2 , m_L^2 , m_e^2 : 45 parameters
- \mathbf{Q} gaugino masses $\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3$ are complex numbers: 6
- trilinear couplings a_u, a_d, a_g are 3 x 3 complex matrices: 54
- bilinear coupling b is 2 x 2 matrix: 4
- Higgs masses m²_{Hu}, m²_{Hd}: 2
 - altogether 111 parameter ???

Symmetries (lepton + baryon number, Peccei-Quinn, R symmetry) lead to'rotations':

-4 non-trivial field redifinitions

-2 in the Higgs sector (since minimal model only 2 parameters in the Higgs sector)

remain 105 free new parameters in the MSSM!