Physics at future Lepton Colliders

G. Moortgat-Pick (Uni Hamburg/DESY)

Lecture 4

pre-SUSY@Madrid, June 2024

courtesy of G. Weiglein

e+e- Higgs factories

pre-SUSY@Madrid, June 2024

Most mature Design: ILC

Generic Linear Collider

• *High luminosity:* ILC beam structure = 1300 bunches per pulse, pulse

every 5 Hz and each bunch contains about 10¹⁰ particles !

• **Challenge:** number of e[±] / pulse = factor 1000 higher than at SLC ('88-98) ! (but luminosity even factor 10000!)

ILC Parameters

Centre-of-mass energy	E_{CM}	GeV	200	230	250	350	500
Luminosity pulse repetition rate		Hz	5	5	5	5	5
Positron production mode			10 Hz	10 Hz	10 Hz	nom.	nom.
Estimated AC power	P_{AC}	MW	114	119	122	121	163
Bunch population	N	$\times 10^{10}$	2	2	2	2	2
Number of bunches	nb		1312	1312	1312	1312	1312
Linac bunch interval	Δt_b	ns	554	554	554	554	554
RMS bunch length	σ_z	μm	300	300	300	300	300
Normalized horizontal emittance at IP	$\gamma \epsilon_x$	μm	10	10	10	10	10
Normalized vertical emittance at IP	$\gamma \epsilon_{y}$	nm	35	35	35	35	35
Horizontal beta function at IP	β_x^*	mm	16	14	13	16	11
Vertical beta function at IP	β_{y}^{*}	mm	0.34	0.38	0.41	0.34	0.48
RMS horizontal beam size at IP	σ_x^*	nm	904	789	729	684	474
RMS vertical beam size at IP	σ_y^*	nm	7.8	7.7	7.7	5.9	5.9
Vertical disruption parameter	D_y		24.3	24.5	24.5	24.3	24.6
Fractional RMS energy loss to beamstrahlung	δ_{BS}	%	0.65	0.83	0.97	1.9	4.5
Luminosity	L	$\times 10^{34}$ cm ⁻² s ⁻¹	0.56	0.67	0.75	1.0	1.8
Fraction of L in top 1% E_{CM}	$L_{0.01}$	%	91	89	87	77	58
Electron polarisation	P_{-}	%	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	30	30
Electron relative energy spread at IP	$\Delta p/p$	%	0.20	0.19	0.19	0.16	0.13
Positron relative energy spread at IP	$\Delta p/p$	%	0.19	0.17	0.15	0.10	0.07

SCRF Linac Technology

pre-SUSY@Madrid, June 2024

- solid niobium
- standing wave
- 9 cells
- operated at 2K (Lqd. He)
- 35 MV/m
 - $Q_0 \ge 10^{10}$

1.3 GHz Nb 9-cell Cavities	16,024
Cryomodules	1,855
SC quadrupole package	673
10 MW MB Klystrons & modulators	436 / 471'

* site dependent

Approximately 20 years of R&D Worldwide \rightarrow Mature technology

Industrial production - XFEL

Vendor following ILC baseline recipe (4 per week, final total: 400 cavities)

Polarized e⁻ beam at the ILC

Remember again: First polarised e^- beam at a LC at SLAC (1992-98) with $P(e^-) = [60\%, 78\%]$

How did they polarise the e^- ? \rightarrow circ. polarised light ($I_z = +1$ or -1) on GaAs cathode

$$\Rightarrow P^{-1} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} = \frac{3 - 1}{3 + 1} = +0.5$$

How to get higher polarisation?

→ use strained lattice: grow GaAs on substrate with diff. crystal spacing ⇒ removes degeneracy in lower level If $h\nu = [E_g, (E_g + \delta)]$: → in principle $P^{-1} = 100\%$ possible...

 $\Rightarrow P^{-1} = 80 - 90\%$ expected at LC

Polarized positron source at the ILC

• The polarized e+ source scheme

• ILC e+ beam parameters (nominal luminosity)

Number of positrons per bunch at IP	2×10 ¹⁰	
Number of bunches per pulse	1312	
Repetition rate	5 Hz	That's about a
Positrons per second at IP	1.3×10 ¹⁴	factor 100 more
Dequired positrop viold: V = 1 Fet/	o ot domning ri	

Required positron yield: Y = 1.5e+/e- at damping ring

Overview positron requirements

	rep rate/Hz	#bunch/pulse	#e+/bunch	#e+/pulse	#e+/s
SLC	120	1	5x10 ¹⁰	5x10 ¹⁰	6x10 ¹²
ILC/Tesla	5	1312	2x10 ¹⁰	2.6x10 ¹³	1.3x10 ¹⁴
CEPC	100	1	2x10 ¹⁰	2x10 ¹⁰	2x10 ¹²
CLIC	50	312	4 x10 ⁹	1.2x10 ¹²	6x10 ¹³
HALHF	10000	1	2-3x10 ¹⁰	2-3x10 ¹⁰	2-3x10 ¹⁴

Undulator technology - Status

- Parameters
 - Undulator period, $\lambda_U = 11.5$ mm
 - Undulator strength K \leq 0.92 (B \leq 0.86T); K ~ B· λ_U
 - Undulator aperture 5.85mm
- 4m prototype built and tested (UK)
 - Cryomodule, contains 2 undulator modules of 1.75m length each

D.Scott et al.,Phys. Rev. Lett. 107, 174803 (2011)

- ILC TDR (2013):
 - Max 231m active undulator length available (132 undulator modules in 66 cryomodules]
- Quadrupoles every $\overline{3}$ cryomodules \rightarrow total length of undulator system is 320m
- pre-SUSY@Madrid, June 2024

Progress since TDR

- Detailed ILC undulator simulations performed:
 - realistic fields, masks and power deposition, misalignments
- Undulator operation: experience with long undulators
 - XFEL: 91 undulators with 5m length each
 - energy loss due to particle loss negligible small (unmeasurable)
 - beam alignment up to 10-20 microns for 200 m (undulator length), remeasured every 6 months
 - during beam operation: beam trajectory controlled better than 3 micron with both slow and fast feedback systems
- Stable operation and alignment experience
 - Beam requirements at XFEL more challenging than at ILC due to FEL requests of photons
 - Tolerances of IIC undulator more relaxed than for XFEL!

• Result: no operation&alignment issues for ILC undulator

Gudrid Moortgat-Pick

K. Alharbi, PhD 2022 S. Riemann, GMP

> W. Decking/XFEL LCWS21

The positron target

- Is located ~240m downstream the undulator end
- 62 kW photon beam ⇔ about few 10¹⁶ photons/second
- Only few % of the photon beam power is deposited in the target

The positron target

- Photon beam hits wheel at 1m diameter, spinning in vacuum with 2000rpm (100m/s tangential speed) → distribute the heat load
 - One pulse with1312 (2625) bunches occupies ~7 (~10)cm
 - Every ~7-8sec load at same target position
 - in 5000h roughly 2.5×10⁶ load cycles at same
- ILC250, GigaZ: E(e-) = 125GeV
 - Photon energy is O(7.5 MeV);
 - target thickness of 7mm to optimize deposition and e+ yield
- Target cooling

- S. Riemann, P.Sievers
- T⁴ radiation from spinning wheel to stationary water cooled cooler
 - Peak temp in wheel ~550°C for ILC250, 1312bunches/pulse
 ~500°C for GigaZ, 1312bunches/pulse

assuming the wheel is a full Ti alloy disk (~simple design solution).

Capture+

preacc.

Cooling of the target wheel

- Few kW heat deposition can be removed with thermal radiation:
 - heat radiates from spinning target to a stationary water-cooled cooler

$$P \sim \sigma \epsilon A \left(T_{radiator}^4 - T_{cool}^4 \right)$$

 ϵ = effective emissivity

- Ti alloys have low thermal conductivity $(\lambda = 0.06 0.15 \text{ K/cm/s})$
 - heat propagation ~ 0.5cm in 7sec (load cycle)
 - heat accumulates in the rim near to beam path

Side view cutout e+ target

Temperature distribution in target

Average temperature in Ti6Al4V wheel as function of radius r for different surface emissivity of target and cooler (Cu); Target wheel assumed as disk

Studies (FLUKA, ANSYS) show that such spinning disk stands heat and stress load

pre-SUSY@Madrid, June 2024

Gudrid Moortgat-Pick

P.Sievers, G. Yakopov

Towards the rotating wheel

Drive and bearings

- Radiation cooling allows <u>magnetic bearings</u>
 - A standard component to support elements rotating in vacuum.
 - The axis is «floating» in a magnetic field, provided by permanent or electro magnets
 - Allows long time operation at high rotation speed without maintenance
 - Among other things, magnetic bearings are used as Fermi-choppers in Neutron Physics and Spallation Sources
- For the specific ILC-application, a technical specification of the required performance and boundary conditions has to be negotiated with the supplier.
 - Specification to be done based on simulation studies
 - Negotations with industrial producer ongoing

Fermi-Choppers für BRISP Copyright: Prof. Dr. Pilgrim, Philipps-Universität Marburg

Towards the rotating wheel

Ongoing drawings and

G. Yakopov 2024

- Within ITN initiative: manufacturing drawings at Uni&DESY
- Ongoing discussion with industrial producer of magnetic bearings

Progress since TDR: Target material tests

- Mainz Microtron (MAMI): electron-beam on ILC target materials, generating cyclic load with same/ even higher PEDD at target than expected at ILC
- analyze target materials via scanning as well as synchrotron diffraction methods
- advantage of synchrotron diffraction: both surface as well as structure of targets with several mm thickness can be precisely studied
- Analysis via Synchrotron diffraction: x-rays of 87.1 keV with different beams size

Results of diffraction method:

- Phase transitions between $\alpha\text{-}$ and $\beta\text{-}phase$ in Ti-alloy observed
- only for 'cw-mode target' phase transition significant
- In addition: dilatometer measurements
- synchrotron diffraction at PETRAIII: detailed surface analyses and different angle resolution incl. det. of phase parameter

• Result: ILC undulator target will stand the load !

Target before and after radiation:

T. Lengler

OMD Design: Pulsed Solenoid

'Baseline': Pulsed Solenoid

- Yield of e+ (OMD&capture Linac): 1.64-1.81 Fukuda-san, 2021
- Within ITN initiative: manufacturing drawings at DESY
 G. Yakopov 2023
- Planned: prototype tests

M. Mentink, C, Tenholt, G. Loisch, 2021

OMD Design: Pulsed Solenoid

'Baseline': Pulsed Solenoid

- Yield of e+ (OMD&capture Linac): 1.64-1.81 Fukuda-san, 2021
- Within ITN initiative: manufacturing drawings at DESY G. Yakopov 2023
- Planned: prototype tests @ CERN

C. Tenholt 2021

		Beaml	Positron Yield			
	@dogleg	@booster	@EC	@DR	@capture (Z <7mm)	@DR
QWT	0.677 kW	0.014 kW	4.01 kW - 5.56 kW	13.15 kW - 14.3 kW	1.07	~1.1
Pulse solenoid w/o shield	0.927 kW	0.055 kW	5.86 kW - 7.93 kW	17.39 kW - 16.01 kW	1.81	1.91
Pulse solenoid with shield	0.871 kW	0.064 kW	5.58 kW - 7.90 kW	17.73 kW - 16.24 kW	1.64	1.74

pre-SUSY@Madrid, June 2024

Solenoid construction@Uni&DESY&CERN

Possible mechanical design

- Solenoid coil
 - Tapered winding
 - 7 planar windings with interconnections
 - Conductor cooled from inside
- Metal supports to hold coil
- Support rods insulated from support bridges
 - Washers e.g. of SiN ceramics
- Magnetic shielding cut at support locations
 - Influence on field to be determined
 - Main shielding to target unaffected

pre-SUSY@Madrid, June 2024

OMD Design: Plasma Lens

'Future': Plasma Lenses

- increases e+ yield but increases load at target only slightly
- advantages in matching aspect
- downscaled prototype designed and produced

Formela, Hamann, Loisch

pre-SUSY@Madrid, June 2024

see IPAC 24

OMD Design: Plasma Lens

Formela, Hamann, Loisch

Prototype design

- Principle: lens is pressed in between mounts with threaded rods and sealed with O-rings
- Mounts made out of PEEK
- Electrodes made out of copper
- Plasma lens made out of sapphire block

Produced plasma

pre-SUSY@Madrid, June 2024

HybridAsymmetricLinearHiggsFactory Design

B. Foster, R. D'Arcy, C.A. Lindstrom

Positron Source:

- Conventional e+ source with up to 31 GeV e- drive beam
 - needs RF
- Undulator-based source: mature for ILC parameters
 - 'sustainable' double-use of electron drive beam
 - higher physics potential

Advanced accelerators utilize wakefields to accelerate at >1 GeV/m

> Wakefields driven in **plasma** by **intense** laser beams: **LWFA/LPA**

- > Wakefields driven in **plasma** by **particle** beams: **PWFA**
- > Wakefields driven in **structures** (e.g. dielectric tubes) by **particle** beams: **SWFA**

courtesy of J. Osterhoff

courtesy of J. Osterhoff

Status and Strategy

- Undulator-based positron source:
 - ➡ ILC e+ source is mature: electron drive beam is 125 GeV
 - however, 31 GeV as e- drive beam not suitable to get intense undulator photon beam
 - ⇒drive beam 500 GeV possible, should be optimized

Ushakov ea 1301.1222

- Re-cycle ILC simulatons:
 - start with helical undulator with for 500 GeV ILC parameters (K-value, length, period)
- Proposed strategy: use 500 GeV e- beam for e+ undulator
 - optimize undulator
 - ➡ synergies with ILC R&D (pulsed solenoid, plasma lens, target wheel)

Reminder: Positron requirements

	rep rate/Hz	#bunch/pulse	#e+/bunch	#e+/pulse	#e+/s
SLC	120	1	5x10 ¹⁰	5x10 ¹⁰	6x10 ¹²
ILC/Tesla	5	1312	2x10 ¹⁰	2.6x10 ¹³	1.3x10 ¹⁴
CEPC	100	1	2x10 ¹⁰	2x10 ¹⁰	2x10 ¹²
CLIC	50	312	4 x10 ⁹	1.2x10 ¹²	6x10 ¹³
HALHF	10000	1	2-3x10 ¹⁰	2-3x10 ¹⁰	2-3x10 ¹⁴

➡ Similar e+ request as ILC

➡ Adaption of ILC e+ source for HALHF reasonable and efficient!

pre-SUSY@Madrid, June 2024

Some basics: just as an overview

Basic formula for photon spectrum of Helical Undulator given by Kincaid (1978) [3]:

Khaled Alharbi

$$\frac{dW}{d\omega} = \frac{N_p q^2 K^2 r}{\epsilon_0 C} \sum_{n=1}^{\infty} \left(J'_n (x_n)^2 + \left(\frac{a_n}{K} - \frac{n}{x_n}\right) J_n (x_n)^2 \right) u(a_n)^2$$

$$N_p = period number, \ n = harmonic number, \ r = \frac{\omega}{2\gamma^2 \omega_0}, \ a_n = \frac{n}{r} - 1 - K^2, \ x_n = 2Kra_n, \ J_n = \text{Bessel function}$$

$$K \text{ is the deflection, } K = 0.0934 \ B_o \lambda_u.$$

$$\lambda_u \text{ is the undulator period.}$$

$$B_o \text{ is B-field on axis.}$$

$$L_u \text{ is the undulator active length} = N_p \lambda_u.$$

The relationship between the energy of the electron beam (E_e) and the 1st harmonic cutoff energies of the photon spectrum (E_1):

The upper half of the energy spectrum at any order n is emitted into a cone of angle:

$$\theta \approx \frac{1}{\gamma} \sqrt{1 + K^2}$$
, γ is Lorentz factor.

pre-SUSY@Madrid, June 2024 4

32

 $E_1 \propto \frac{E_e^2}{\lambda (1 + K^2)}$

Undulator with E(e-)=500 GeV

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

Three possibilities:

Ushakov ea 1301.1222

1.Use ILC undulator parameters (K=0.92, period λ=11,5 mm)

Yield and Polarization

Undulator length

⇒ >1.5 yield achievable with shorter length but low P(e+)~5%

not acceptable by physics

pre-SUSY@Madrid, June 2024

Undulator with E(e-)=500 GeV

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

Ushakov ea 1301.1222

- **Three possibilities:**
- 2.Use new undulator parameters
 - ⇒ e.g. lower K
 - would result in higher polarization

but

- ➡ factor 4 higher energy deposition in target
- additionally reduced photon spot size
- (probably) technically not acceptable

Undulator with E(e-)=500 GeV

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

Three possibilities:

Ushakov ea 1301.1222

- 3. Use new undulator parameters
 - \Rightarrow e.g. higher K = 2.5, period λ=43 mm
 - ➡ leads to more higher harmonics, higher yield,

higher γ_{ave} energy and higher energy spread

Iarger γ spot size

e+ capture more difficult....but more know-how (PS, PL) now! ³⁵ pre-SUSY@Madrid, June 2024 Gudrid Moortgat-Pick

Polarization@Und_{E(e-)=500} GeV

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

• Apply photon collimator:

Ushakov ea 1301.1222

- High P(e+) achievable: ~54%
- ➡ stick to this undulator parameters: capture& target issues

Deposited Energy & Target Stress

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

- So far: FLUKA and ANSYS simulation done 'only'
 - ➡ for ILC e- beam
 - ➡ for rotating target wheel with 100 m/s ('ILC target')
 - Results: Stress is ~25% tensile yield stress and 44% of fatigue stress of Ti-alloy target (but done without centrifugal forces of wheel and superposition effects)....but should be safe (for ILC e- beam)!

Simulations have now to be redone for HALHF e- beam !

pre-SUSY@Madrid, June 2024

Ushakov ea

1301.1222

HALHF outline?

Goals: implement undulator with L=176m, K=2.5, λ =43 mm and collimator aperture R_c = 0.9 mm

- Similar as for ILC set-up..... undulator at 'end-of-the-linac'
 - ➡ e- emittance growth was a few % and energy loss 3-4 GeV
 - starting point for e+: target = rotating wheel

OMD = pulsed solenoid / Plasma

Perfect combination of mature new and known technologies !

pre-SUSY@Madrid, June 2024

Gudrid Moortgat-Pick

e- BDS

Conclusions on LC R&D

Polarized positron sources@ILC from GigaZ to >500 GeV:

- Simulaneous e+ polarization allows best control of systematics, higher statistics, best physics results
- ILC undulator-based source mature and feasible
- prototype work on pulsed solenoid and rotating wheel ongoing
- New technology for future OMD: plasma lens under tests
- HALHF plans (few km for e[±] beam acceleration):
 - new technology (PWA) in combination with SRF
 - allows upgrade to higher energies in short tunnels
 - adapt e⁺-based undulator parameters for HALHF e- beams

➡ Proposal: ILC can be built NOW, future upgrade as HALHF...

Be prepared for the 'Unexpected'...

\succ the LC +LHC are mandatory.....!

pre-SUSY@Madrid, June 2024

Short reminder: why are polarized e[±] needed?

- Important issue: measuring amount of polarization
 - **limiting systematic** uncertainty for high statistics measurements
 - Compton polarimeters (up- /downstream): envisaged uncertainties of ΔP/P=0.25%
- Advantage of adding positron polarization:
 - Substantial enhancement of eff. luminosity and eff. polarization
 - new independent observables
 - handling of limiting systematics and access to in-situ measurements: ΔP/P=0.1% achievable!
 - Windows to new physics already at low energy!
- Physics impact: EWPO, Higgs-Physics, WW/Z/top-Physics, New Physics !

Literature: polarized e+e- beams at a LC (only a few examples)

- LCC-Physics Group: 'The role of positron polarization for the initial 250 GeV stage of ILC', arXiv: 1801.02840
- G. Moortgat-Pick et al. (~85 authors) : `Pol. positrons and electrons at the LC', Phys. Rept. 460 (2008), hep-ph/0507011
- G. Wilson: `Prec. Electroweak measurements at a Future e+e- LC', ICHEP2016, R. Karl, J. List, LCWS2016, 1703.00214
- many more (only few examples): 1206.6639, 1306.6352 (ILC TDR), 1504.01726, 1702.05377, 1908.11299,2001.03011, ...
- G. Moortgat-Pick, H. Steiner, `Physics opportunities with pol. e- and e+ beams at TESLA, Eur.Phys.J direct 3 (2001)
- T. Hirose, T. Omori, T. Okugi, J. Urakawa, Pol. e+ source for the LC, JLC, Nucl. Instr. Meth. A455 (2000) 15-24,....
 pre-SUSY@Madrid, June 2024 Gudrid Moortgat-Pick

Compton polarimetry at ILC

• Upstream polarimeter: use chicane system

- Can measure individual e± bunches
- Prototype Cherenkov detector tested at ELSA!
- **Downstream polarimeter:** crossing angle required
 - Lumi-weighted polarization (via w/o collision)
 - Spin-tracking simulations required

pre-SUSY@Madrid, June 2024

Polarimetry requirements

- SLC experience: measured ΔP/P=0.5%
 - Compton scattered e- measured in magnetic spectrometer
- Goal at ILC: measure ΔP/P≤0.25%
 - Dedicated Compton polarimeters and Cherenkov detectors
 - Use upstream and downstream polarimeters

- Use also annihilation data: `average polarization'

> Longterm absolute calibration scale, up to $\Delta P/P=0.1\%$

CEPC Operation Plan and Goals in TDR

Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. per IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. per year (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events	
Н*	240	240 10		8.3	2.2	21.6	4.3×10^{6}	
			30	5	1.3	13	$2.6 imes 10^6$	
Z	01	2	50	192**	50	100	$4.1\times \mathbf{10^{12}}$	
	91	2	30	115**	30	60	$2.5 imes 10^{12}$	
W	160	1	50	26.7	6.9	6.9	$2.1\times {\bf 10^8}$	
	160		30	16	4.2	4.2	$1.3 imes 10^8$	
tī	360	5	50	0.8	0.2	1.0	$0.6\times {\bf 10^6}$	
			30	0.5	0.13	0.65	$0.4 imes 10^6$	

* Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

*** Calculated using 3,600 hours per year for data collection.

CEPC-SppC Proposals-J. Gao

ICFA Seminar 2023, Nov. 30, 2023, DESY

4

CEPC Operation Plan and Goals in TDR

	. E.			SR	Lumi. p	er IP	Integrated Lumi.	Tota		Total	no. of
	FCC-ee Run Plan										
	Phase Run duration Center-of-mass Integrated Event (vears) Energies (GeV) Luminosity (ab ⁻¹) Statistics										•
	FCC-ee-Z		4	88	88-95		150	3×10^{12} visible Z decays			$\sim \frac{\Delta_{\text{LEP},\text{S}}}{2}$
	FCC-ee-W		2	158	3-162		12	10	⁸ WW	events	~ 500
	FCC-ee-H		3	2	240		5	1	0 ⁶ ZH	events	
	FCC-ee-tt		5	345	345-365 1.5		10^6 tt events				
	360 5 30		50	0.0		0.2	1.0		0.07	× 10	
			30	0.5		0.13 0.65			0.4 >	× 10 ⁶	
*	Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.										

** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

*** Calculated using 3,600 hours per year for data collection.

CEPC-SppC Proposals-J. Gao

ICFA Seminar 2023, Nov. 30, 2023, DESY

4