

Beam Tracking Detectors

→ For charged particles
→ Transmission detectors
→ Event by event (≠ monitoring)

Antoine Drouart CEA Irfu/SPhN – antoine.drouart@cea.fr

Why measure the ion trajectory ?

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

Stochastic process Charge exchange δQ charge state distribution for E_i < 50MeV/u</p> DITANET DITANET Workshop 11.07 – 11.08.2011 – Sevilla

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

Losses, Straggling and Detection Set-up

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

Diamond tracking for R³B @ FAIR (2013+)

The super FRS will provide heavy ions with ~700MeV/u

> Measurement of all kinematic variables in a HI reaction Different tasks: High resolution tracking in the super FRS, radiation hard (SFRS) 10⁶ cm⁻¹ s⁻¹ 2 x TOF (SFRS – target) (reaction products)

Short characteristics of CVD diamond detectors

Diamond as a detector material

- low capacitance
- low noise
- good heat conductivity
 - (5 x higher than Cu)
- large band gap of 5.5 eV
- small signal (< half of a Si of similar size)
- high charge carrier velocity saturation
- fast pulse response time
- Diamond Crystal production

chemical vapour deposition (CVD)

- commercial production
- polycrystalline diamonds (PCD)
 - thickness 50-500µm
 - max size ~ 5x5cm2
 - price ? (100 euro/det.)
- single crystal diamond (SCD)
 - smaller (max 25x25 mm2)
 - better performance (energy resolution)
 - more expensive (5xPCD)

Source: M. Gorska (GSI)

 $\label{eq:antoine_brought_ceal} Antoine \ Drouart \ CEA \ Irfu/SPhN \ - \ antoine. drouart @cea. fr$

Diamond detectors performance

very fast timing

pulse risetime: 200 ps width: 2ns (PCD) 5ns (SCD)

- operating voltage 1 V/μm
- radiation hardness

-Tests with $2x10^{15}$ p/cm² did not show any significant deterioration of a sig./noise

-pumping effect (PCD) : improvement with increasing dose

• position resolution

below $10 \mu m$ can be achieved with strip detectors X and Y

• efficiency

70%PCD-100% SCD

Diamonds as TOF detectors

tests with 1GeV/u U beam resulted in TOF of $\,\sigma\text{=}20\,\text{ps}$

\odot

- Radiation hard (>2.15p/cm²)
- low occupation time \rightarrow high counting rate 10⁷pps
- ultra fast signal \rightarrow time resolution σ = 30ps
- reasonable energy resolution $\sigma = 17 \text{keV}$ (single crystal)
- small size, biggest in use 60x40mm² [PCD, Cave A @ GSI]
- thickness > 50 μ m \rightarrow restricted to high energy
- require high speed electronics
- single crystals have better performances but are smaller (few mm²) → Mosaic detector ?

→ very promising technique, lot of developments

KaBes on the NA48 exp @ CERN (in use) The micromegas TPC

B. Peynaud, NIM A 535 (2004) 427

Fig. 1. The K12 charged kaon beam line with KABES and K^+/K^- focusing at the DCH spectrometer.

Need to measure trajectories to obtain the momentum of individual Kaons (~60GeV/c)

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

2 orthogonal detectors required to have X and Y

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

DITANET Workshop 11.07 – 11.08.2011 – Sevilla

U - CEA Saclav

Isla

Institut de recherche sur les lois fondamentales

de l'Univers

Performances

- •Time resolution = 0.7 ns (σ)
- \bullet Spatial res. of 70 μm
- 40 MHz, expected up to 1GHz
- Efficiency close to 100 %

DITANET Workshop 11.07 – 11.08.2011 – Sevilla

Virtues & Flaws of Micromegas TPC

\odot

- Radiation hard
- Very high counting rate : up to 10⁹pps !
- Very good position resolution $< 100 \mu m$
- Bulk micromegas : robust and easy to build
- \bigotimes
- 1 direction only
- Moderate energy resolution (~10%)
- Need an independent time si Micromegas gas detectors range of applications can include electro

ccolo micromegas for neutron detection

J. Pancin & al. NIMA 592 (2008) 104

30 mm

Ċ

Relativistic muons

Institut de recherche sur les lois fondamentales de l'Univers

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

 \odot

- Radiation hard
- Large size (>1m²)
- Very high counting rate : 10⁵Hz/mm²
- Excellent position resolution $\sigma \sim 40 \mu m$

8

- Moderate gain (~30-50) but several stages capies added
- Dead zones due to spacers
- Poor energy resolution (~27)
- High capacitance 🛬

GASE

Intermediate energy : 50MeV/u

Effect of trajectory reconstruction

ITU - CEA Saclay Institut de recherche sur les lois fondamentales de l'Univers

Ista.

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

\odot

- fast signal \rightarrow good time resolution σ = 100ps
- good position resolution $\sigma = 100 \mu m$
- high detection efficiency (~100%)
- large size available (>100cm²)
- cheap and can be repaired
- Thin : ~5µm of Mylar (from windows and cathodes)

8

- vulnerable to discharge : rate ~ 10^5 pps
- 1.5µm windows required \rightarrow E_{ion} > 10MeV/u
- fragile and delicate to use

Very low Energy regime : 5MeV/u

Institut de recherche sur les lois fondamentales de l'Univers

e.g.: SPIRAL/SPIRAL2 radioactive beams (in use / 2014)

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

Emissive foil Detectors

Institut de recherche sur les lois fondamentales de l'Univers

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

Micro Channel Plates

Institut de recherche sur les lois fondamentales de l'Univers

Ista.

Low Pressure Gas Detector

Irtu - CEA Saclay Institut de recherche sur les lois fondamentales de l'Univers

Isla

A. Drouart & al, NIM A579, (2007) p1090

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

\odot

- Detector as thin as it can be (down to 20µg/cm²)
- Fast signal \rightarrow good time resolution σ < 100ps

8

- Poor sensitivity to high energy, light ions
- Moderate position resolution σ ~600µm
- Require high electric field and/or magnetic field

Characteristics depend on the secondary electron detector

- gas detector : large size
- micro channel plate : high counting rate
- scintillating plastic : easy to use

Conclusions

Beam tracking requires

- \rightarrow low thickness not to perturb the incoming ion
- ➔ good position and time resolution
- → cope with high flux of particles

Technique	Regime	σ(time)	σ(pos.)	Max rate
	MeV/u	ps	μm	Hz
Diamonds	500	30	10 (strip)	10 ⁷
Atm. pressure	500	700	<100	10 ⁸
Low pressure	50	500	150	10 ⁵
Emissive foils	5	100	500	10 ⁶⁻⁷

Thank you for your Attention

→ Enjoy the next talks !

Antoine Drouart CEA Irfu/SPhN - antoine.drouart@cea.fr

