

Beam Diagnostics for the IFMIF / LIPAc Accelerator

Jan Egberts^{1,2,3}, Philippe Abbon¹, Hervé Deschamps¹, Fabien Jeanneau¹, Jacques Marroncle¹, Jean-Philippe Mols¹, Thomas Papaevangelou¹,

¹⁾ CEA Saclay ²⁾ École Doctorale MIPEGE, Université Paris Sud XI ³⁾ Ditanet, FP7, Marie Curie

Outline

- ❖ IFMIF / LIPAc Accelerators
- ❖ Beam Loss
 - Ionization Chamber
 - CVD Diamond
- Transverse Beam Profiling
 - Ionization Profile Monitor
- Conclusion

jan.egberts@cea.fr 11.11.2011

neutron source: 10¹⁷ n/s

LIPAc: Linear IFMIF Prototype Accelerator

IFMIF: <u>I</u>nternational <u>F</u>usion <u>M</u>aterial <u>I</u>rradiation <u>F</u>acility

IFMIF:

Beam current: 2 x 125 mA cw deuterium

Energy: 40 MeV

Beam power: 2 x 5 MW

Li target

The second of the s

LIPAc: Prototype limited to 1 x 125 mA cw @ 9 MeV, 1.125 MW

Diagnostics developed by CIEMAT Madrid, INFN Legnaro, and CEA Saclay

Irfu

Beam Loss - Ionization Chamber (IC)

Designed for LHC:

- high sensitivity at high energies
- low sensitivity at low energies

Approach to tune IC:

- neutron capture by Boron 10
- replace fill gas by BF3
- wrap IC with CH2 to thermalize neutrons

GEANT4 simulation performed at CERN by Markus Stocker

3

Beam Loss - Ionization Chamber (IC)

Geant4 simulation results:

- BF3 works well for low energy neutrons
- IC signal increased with CH2 wrapping
- ❖ potential signal gain: ~ 100

Issues:

- BF3 is highly toxic...

❖ BF3 is corrosive...

bad combination...

Beam Loss – CVD Diamond

- sCVD diamonds to be placed in the cryostat
- Tested at liquid nitrogen and helium
- Calibrated at ambient temperature for neutrons

jan.egberts@cea.fr

11.11.2011

5

read-out strips

Principle of Operation:

- Beam ionizes residual gas
- Electrons / ions are extracted by E-field
- Beam profile derived from ionization current

Intrinsic issue:

- Ionization must NOT change its profile
 - ⇒ Uniform extraction Field required!

HV-plate

LIPAc Challenges:

- Limited space
 - ⇒ Compact design (wrt. large aperture)
- ❖ High background radiation (~7 kSv/h close to the beam dump)

IPM Prototype Design

- Charge collected on 32 strips with 1.25 mm pitch
- Prototype designed based on FEM E-field simulations*
- ❖ Internal dimensions: 61 mm x 59 mm x 40 mm
- ❖ Voltage applied: 5000 V (E = 833 V/cm)
- Tested at GSI and CEA Saclay

read-out strips

*Lorentz-E Particle Trajectory Solver Copyright © 1998 - 2010 Integrated Engineering Software Sales Inc.

10-5 mbar **N**₂

BIF: Beam Induced Fluorescence

BIF Monitor based on light emitted by atoms excited by the beam

BIF profiles acquired by Frank Becker, GSI

BIF Comparison

Final Design Challenges:

- ❖ High radiation level ⇒ radiation hard components exclusively
- ❖ Lack of space ⇒ very compact design required

Design results:

- Depth of 100 mm with an aperture of 150 mm
- ❖ E-field uniform within ~ 3%

Particle Tracking – Ion Displacement

Neglecting Space Charge Effect!

Particle Tracking:

Transverse displacement during ion drift versus starting position

In beam region:

Displacement < 500 μm

Particle Tracking – Ion Displacement

Transverse Ion Drift with a Beam of 125 mA

Space Charge for 125 mA Beam

Particle Tracking:

during ion drift versus

Transverse displacement starting position

With space charge of 125 mA:

Displacement > 5 mm

Simulation beam profile measurement:

Resulting Profile:

Strong Distortions due to

Space Charge

original beam profile

measured profile (simulation)

Approach: Correction Algorithm to compensate Space Charge...

jan.egberts@cea.fr 11.11.2011 12

Example of a self-consistent solution:

corrected beam profile original beam profile

measured profile (simulation)

Self-Consistent Solution 16000 n.u. 16000 14000 **Corrected Profile** Mean 0.1347 **Original Profile RMS** 6.377 12000 Kurtosis -0.4766 10000 Mean 0.1501 8000 **RMS** 6.273 Kurtosis -0.5563 6000 4000 2000 -15 -10 10 15 Position / mm

jan.egberts@cea.fr 11.11.2011 13

Conclusion

- LHC IC as beam loss monitor
 - Possibility to increase IC neutron sensitivity, if necessary
- CVD diamond in Cryostat
 - Tested at cryogenic temperatures
 - Calibrated for neutrons
- IPM as transverse profiler
 - Tested at GSI
 - Tested at CEA Saclay
 - Algorithm for space charge compensation

Backups

Irfu

jan.egberts@cea.fr 11.11.2011 15

Particle Tracking – Ion Displacement

Transverse Ion Drift with a Beam of 125 mA

Particle Tracking:

Transverse displacement during ion drift versus starting position

With space charge of 125 mA: Displacement > 5 mm

Particle Tracking – Ion Displacement

Simulation of the Transverse Ion Drift in the el. Field

Neglecting Space Charge Effect!

Particle Tracking:

Transverse displacement during ion drift versus starting position

Tracking w/o space charge in same scale!!!

saclay

jan.egberts@cea.fr 11.11.2011

How to find the proper beam distribution?

Idea:

Vary test distribution until self-consistent solution is found!

Possible criteria for self-consistency:

* Beam position (1. distribution moment)

unaffected by space charge

* RMS (2. distribution moment)

Skewness (3. distribution moment)

expected to be zero

Kurtosis (4. distribution moment)

 \rightarrow two degrees of freedom!

What could be a proper test distribution?

Candidate for test distribution: Generalized Gaussian

$$p_{\alpha,\beta,\mu}(x) = \frac{\beta}{2\alpha\Gamma(1/\beta)}e^{-(\frac{|x-\mu|}{\alpha})^{\beta}}$$

μ given by profile center

 \rightarrow two degrees of freedom!

Cover any shape ranging from peaked Gaussian to rectangular distributions!

Example of a self-consistent solution:

Parameters of test distribution:

RMS: 6.30 mm

Kurtosis: -0.50

Consistent with:

RMS: 6.38 mm

Kurtosis: -0.48

Original beam profile:

RMS: 6.27 mm

Kurtosis: -0.56

Irfu

jan.egberts@cea.fr 11.11.2011 20

Example of a **not** self-consistent solution:

Parameters of test distribution:

RMS: 8.72 mm

Kurtosis: -0.81

Not consistent with:

RMS: **7.15** mm

Kurtosis: -0.75

Original beam profile:

RMS: 6.27 mm

Kurtosis: -0.56

Not Self-Consistent Profile Correction

jan.egberts@cea.fr

Linear Ifmif Accelerator EU-HI

Correction Algorithm - Conclusion

Advantages:

- Good correction results according to simulations
- Generalized Gaussians grant wide range of possible profile shapes
- Cheap no additional hardware components required
- Option to correct for other well-known distortions

Disadvantages:

- Still in a very preliminary phase!
- Not yet practically tested!
- No correction possible for profiles that cannot be approximated by generalized Gaussians!

Field Uniformity Test

- Move IPM in 2 mm steps perpendicular to the beam
- Plot profile center versus IPM position
- Linear response over all active area

Good field uniformity

Beam: 30 μA Ca¹⁰⁺

jan.egberts@cea.fr

11.11.2011

Position Resolution

- Move IPM in 100 μm steps perpendicular to the beam
- Plot profile center versus IPM position
- Can resolve 100 μm beam shifts

Beam: 120 μ A Xe²¹⁺

jan.egberts@cea.fr

Beam: 1 mA Xe²¹⁺

Electric Field Strength

- Profile width decreases with higher extraction fields
- Plateau at a few kV
- Effect stronger for molecular N₂ than for atomic noble gases

E-field dominant at 500 - 1000 V/cm

jan.egberts@cea.fr 11.11.2011 25

lowest current measurable at IFMIF:

- *measurable for 30 μ A 48 Ca $^{10+}$ at 1.4·10⁻⁶ mbar
- ❖Z² dependence of ionization cross section:

$$30~\mu A~^{48} Ca^{10+} \Leftrightarrow 300~\mu A~D^+$$

pressure scaling:

$$300 \, \mu \text{A} \cdot (1.4 \cdot 10^{-6} \, \text{mbar} / \, 10^{-8} \, \text{mbar}) = 42 \, \text{mA} \, \text{at} \, 10^{-8} \, \text{mbar},$$

or

$$300 \,\mu\text{A} \cdot (1.4 \cdot 10^{-6} \,\text{mbar} / \, 10^{-7} \,\text{mbar}) = 4.2 \,\text{mA} \,\text{at} \, 10^{-7} \,\text{mbar}$$

jan.egberts@cea.fr 11.11.2011 26

High Current Test

IPHI: Injecteur de Protons à Haute Intensité (I < 100 mA; E = 95 keV)

- Test at IPHI source
 - ❖ Low energy ⇒ high ionization cross section
 - ❖ No collimation ⇒ IPM is irradiated by beam
- ❖ IPM operational up to 10 mA cw (SC and I_{ioniz} comparable to LIPAc)
 - For I > 10 mA: tripping power supply probably due to primary or secondary particle bombardment
- IPM tested up to 20 mA in 10 % duty cycle

Data Readout

Front-End (FE) electronics:

- FE electronics mounted on the beam pipe
 - Transimpendance card / logarithmic card:
 - Continuous multiplexed output every ≈ 2 μs
 - Integrating card:
 - * Integration time between 81 μs and 64 ms or even more...

Data Acquisition:

- ❖ Acqiris Card:
 - ❖ 8 bit ADC
 - 4 1 GHz sampling rate with 2MB memory depth
 - ❖ 2133 acquisitions per profile up to 800 profiles per data transfer

