

DITANET INTERNATIONAL CONFERENCE Accelerator instrumentation and beam diagnostics

GEм-based beam profile monitors

Serge Duarte Pinto

- Antiproton decelerator Beam profiles The detector GEMs Chin cathode Xr readout Production Profiles Electronics Ionization chamber Conclusions
- Triple семs Outlook

GEM-based beam profile monitors For the antiproton decelerator and the other experimental zones

ANTIPROTON DECELERATOR Low energy p beams

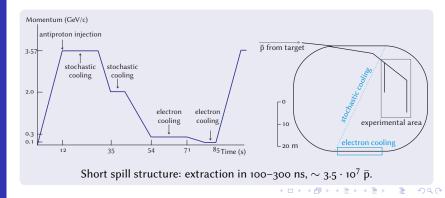
GEм-based beam profile monitors

Serge Duarte Pinte

Antiproton decelerator

Beam profiles

The detecto GEMs Thin cathode Xy readout Production


Profiles

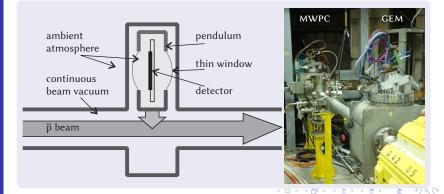
Electronics Ionization chamber Conclusions Triple GEMS

Outlook

Five experiments in AD hall

Atrap	antihydrogen trapping & spectroscopy	5.3 MeV
Alpha	antihydrogen trapping & spectroscopy	5.3 MeV
Asacusa	antiprotonic helium trapping & spectroscopy	5.3 MeV
Aegis	antihydrogen & gravity	5.3 MeV
Ace	antiproton cancer therapy	126 MeV

ANTIPROTON DECELERATOR Beam profile measurements


GEM-based beam profile monitors

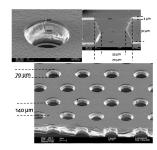
Serge Duarte Pinto

- Antiproton decelerator
- Beam profiles
- The detector GEMs Thin cathode Xy readout
- Productio
- Electroni
- Ionization chamber Conclusion
- Triple GEMS Outlook

Movable detector that absorbs beam

- Due to low energy beam profile measurements are necessarily destructive.
- Detector is installed in a pendulum that can be moved in & out the beam.
- The inside of the pendulum is in contact with ambient air.
- Window of 25 μm (ss) causes energy loss and multiple scattering.

The detector _{Gемs}

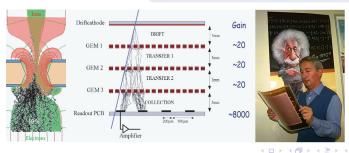

Geм-based beam profile monitors

Serge Duarte Pinto

Antiproton decelerator Beam profiles The detector GEMs Thin cathode Xy readout Production

Electronics Ionization chamber

Conclusions Triple демs Outlook



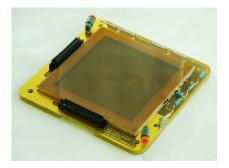
GEM properties

- Amplification structure independent from readout structure
- Fast electron signals, no ion tails
- Manufacturing based on industrial materials & procedures

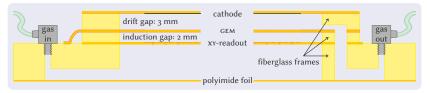
ъ

- Possibility to cascade
- Flexible material, possible to change shape

THE DETECTOR Single GEM or ionization chamber


GEM-based beam profile monitors

Serge Duarte Pinto


- Antiproton decelerator Beam profiles
- The detecto
- Thin catho
- Xy readout
- Productio
- Profiles
- Electronics Ionization chamber
- Conclusions Triple демs Outlook

Light single GEM detector

- Total material budget: 0.4 % X_o.
- Based on 10 \times 10 cm² gems from cern store.
- Gas is routed through the vias in the readout board and through the GEM holes.
- Ultra light cathode/window.
- Pads & strips xy readout.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

THE DETECTOR Ultra-light cathode

Geм-based beam profile monitors

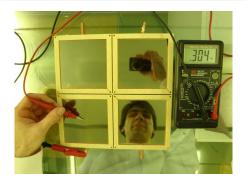
Serge Duarte Pinto

Antiproton decelerator Beam profiles

GEMs

Thin cathode

Xy readout Production

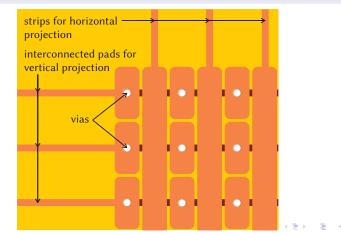

Profiles


Electronics Ionization chamber Conclusions

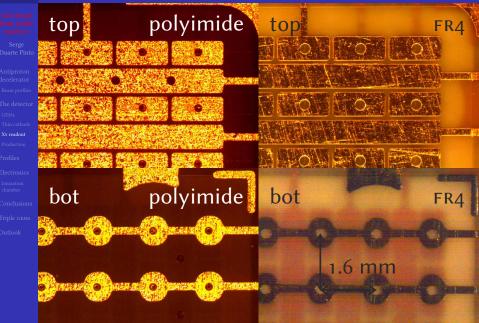
Triple демs Outlook

Cathode & window

- Made from the base material of CERN GEMS.
- In the active area all copper is removed, but not the submicron tie-coat of chrome.
- The resistivity is reproducible from foil to foil, and does not change after stretching.
- Any surface impact must be avoided.



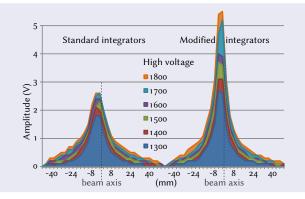
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●


- GEM-based eam profile monitors
- Serge Duarte Pinto
- Antiproton decelerator ^{Beam profiles} The detector
- GEMs Thin cathod
- Xy readout
- Productio
- Profiles
- Electronics Ionization chamber
- Conclusions Triple GEMS
- Outlook

- Easy to manufacture at the wide pitch of 1.6 mm.
- Plated trough hole vias rather than microvias.
- No doubts about charge sharing.
- Works on whatever substrate, as holes are mechanically drilled.

THE DETECTOR Strips & pads readout board

PROFILES Asacusa


GEM-based beam profile monitors

Serge Duarte Pinto

Antiproton decelerator Beam profiles The detector GEMs Thin cathode Xy readout Production

Profiles

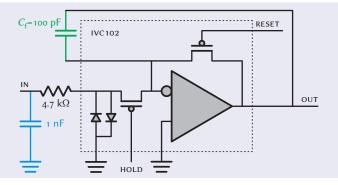
Electronics Ionization chamber Conclusions Triple GEMS Outlook

Profiles at a range of high voltage values

- GEM voltages 280-320 V. Discharges at higher voltages.
- Obviously no exponential gain. Peak is suppressed with respect to tails.
- Modification in the electronics (explained next slide) helps a lot, but still ...
- The GEM itself seems unable to deliver calibrated gain.

GEM-based beam profile monitors

Serge Duarte Pinto


- Antiproton decelerator Beam profiles The detecto: GEMs
- Thin catho
- Production
- Profiles

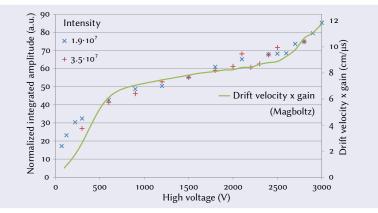
Electronics

chamber Conclusions Triple GEMS Outlook

Tweaking electronics

- Add capacitor at input, to lower peak input current and slew rate of op-amp.
- Lower integration capacitor, lowers current and increases sensitivity.
- If you can increase sensitivity sufficiently, GEM amplification becomes superfluous (in case of 5.3 MeV beam, but how about 126 MeV?).

PROFILES Without the GEM


Geм-based beam profile monitors

Serge Duarte Pinte

Antiproton decelerator Beam profiles The detecto GEMs Thin cathode Xy readout Production Profiles

Ionization chamber Conclusions Triple GEMS

. Outlook

ヘロンス語 とくほどくほどう

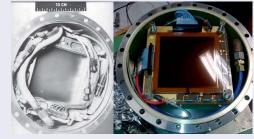
Micropattern ionization chamber (100 pF)

- Works fine, no distortion, proportional with beam intensity.
- Amplitude largely defined by recombination.
- Ionization density in center of the beam of order 10¹² cm⁻³!

GEM-based beam profile monitors

Serge Duarte Pinto

Antiproton decelerator Beam profiles The detector GEMs Thin cathode Xr readout Production


Electronics Ionization chamber

Conclusions Triple GEMS

- For 5.3 MeV beams, an ionization chamber is sufficient.
- For 126 MeV beams, an additional gain of few 100 is needed.

We settle for a single GEM which can be switched between *transparent* and *multiplying* modes.

Old and new profile detectors installed in a pendulum

MWPC

GEM

(日)

TRIPLE GEMS For the other experimental zones

Geм-based beam profile monitors

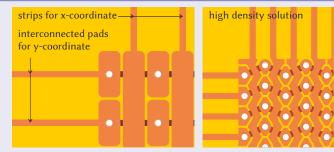
Serge Duarte Pinto

- Antiproton decelerator Beam profiles
- The detect
- GEMs
- Thin cathod Xy readout
- Production

Profiles

Electronics Ionization chamber

Conclusions


Triple GEMS

Outlook

Replacement of all wire chambers

- CERN experimental areas are full of wire chambers.
- Become more & more difficult to maintain with wire experts retiring.
- We seek to develop GEM-based replacement for each type:
 - **1** 10 \times 10 cm² active area, integrating electronics.
 - 20×20 cm² active area, integrating electronics.
 - \bigcirc 10 \times 10 cm² active area, delay line readout.

Finer-pitch xy readout

Such a layout allows pitch down to 800 $\mu \rm m,$ while using FR4 & mech. drilling.

GEM-based beam profile monitors

Serge Duarte Pinto

- Antiproton decelerator Beam profiles
- GEMs
- Thin cathod
- Xy readout
- n ol
- Electronics Ionization chamber
- Conclusions Triple демs Outlook

- 6 detectors installed in AD so far.
- Next few months we will continue production and installation during winter shutdown.
- We already started testing triple GEMs for the other experimental areas.
- In the course of 2012 we may start production of the profile detectors (integrating electronics).
- Delay line readout could require a bit more R&D.

