High Power Proton Diagnostics

Andreas Jansson European Spallation Source Seville, Spain, 2011-11-11

Outline

- Brief intro to ESS a high power proton linac
 Talk will focus mainly on linac diagnostics
- Beam loss for protons vs H-
- High power hadron diagnostics challenges
 Position, phase, current & loss
- Specific issues with high power protons (a opposed to H-)
 - Transverse & longitudinal profile/halo

- ESS is a long pulse spallation neutron source based a 5MW superconducting proton linac.
 - Will be built in Lund, Sweden.
 - Partnership of 17 (and counting) European countries
 - "Neutrons before the decade is out"
- Besides becoming the worlds most powerful neutron source, it also aims to be the worlds first sustainable (large scale) research facility.

ESS

SCL Losses for Design Optics, 30 mA

SNS Losses vs beam current

SCL Average Losses 2011.09.25

EUROPEAN SPALLATION SOURCE

A. Shilshlo et al, SNS

General high power hadron issues

Beam loss

EUROPEAN SPALLATION SOURCE

- beam can do significant damage, so
 - fast response (~ few us) needed
 - blind spots must be avoided
- Beam Current
 - Differential current may need to trigger abort
- Beam position
 - Large excursions may need to trigger abort
- Beam phase
 - Non-relativistic beam, need to measure timeof-arrival for cavity phasing (linacs)

SPALLATION Specific High Power Proton Issues

- Due to high power, non-invasive or minimally invasive diagnostics needed.
 - Since no electrons to remove, laser (photodetachment) based diagnostics not an option.
 - Difficult to measure beam dimensions
 - Transverse profile
 - Longitudinal profile
- Some diagnostics may not be able to take full beam
 - Special short diagnostics pulse (~100us)

Wire Scanners

- Minimally invasive -> very thin wires.
- Wires down to 7 microns (carbon)
- Thermionic emission limits useful temperature range

Wire Damage

Carbon wire tested at LEDA Los Alamos (M Plum et al)

- Wire may break, and need to be replaced
- Concerns about use of wire scanners close to SC cavities due to possible contamination from wire fragments.
- Tests at GANIL showed no effect of sublimating wires close to SC cavities, except from carbon (bad)

– Spiral2 will use wire scanners in SC linac.

EU contract number RII3CT-2003-506395

CARE Conf-05-027-HIPPI

MCP-Phosphor module of rectangular shape

MCP test module with doubled filament

P. Forck et al, GSI

- Collects rest gas ions (or electrons) ionized by the beam.
- In the case of ions, space cha may be an issue.
- For electrons, need B-field.
- Microchannel plates age, and to be replaced (break vacuum)

Figure 6: Schematic sketch of an IPM.

Tevatron IPM

E-Field Box

BIW

Gas Fluorescence

- Measures light emitted by atoms/molecules excited by the beam.
- Cross sections much lower than for ionization
- Light emitted isotropically, collected in limited solid angle.
- Simple (viewport and camera)

F. Becker et al, GSI

Gas Jet

• If rest gas pressure not sufficient, may use gas jet to increase local pressure.

Kuehnel et al, EPAC08

European Spallation E-beam scanner/Profilometer

- Scan probe beam (ions or electrons) perpendicular to main beam, measure displacement and differentiate to get profile
- Slow ions average over many bunches, while electrons probe instantaneuos beam current.

$$\delta x y$$

 θ

Quadrupole Pick-up

 $A + B + C + D \propto I$ $A - C \propto x I$ $B - D \propto y I$ $A - B + C - D \propto I(\sigma_x^2 - \sigma_y^2 + x^2 - y^2)$

- Can be done with buttons, striplines, magnetic loops or cavities
- Very big difference between common mode and quadrupole mode signals
- Cavities and magnetic loops can be designed to suppress unwanted mode couplings
- Electrical offsets are important

Halo Diagnostics

- Options for halo measurements include instrumented scrapers, vibrating wires, and high dynamic range wire scanners
 - Interesting option is wire scanner with coincidence counting detector/ telescope

LEDA WS, LANL

Target spot síze

- Need to measure beam spot on target
- SNS use CrAl2O3 coated target.
 - Yield decreases

 approximately uniformly
 due to radiation effects,
 and stabilizes after some
 time.
- Fluorescence monitor (eg. Juelich)
- IPM (e.g. LiPAC)
- Wire temperature (e.g. PSI)

Target with Cr:Al2O3 coating

W. Blokland, BIW10

Bunch Shape Measurement

 At low beta, field is not transverse, and wall current not longer reflect beam pulse

EUROPEAN SPALLATION SOURCE

 $\frac{-dq_w}{ds}$

a

SPALLATION Feshenko Bunch Shape Monitor

- The Feschenko monitor (first Faraday cup award) make use of secondary electrons from a wire in the tail of the beam distribution.
 - Very fast (ps) process
- A high bias voltage accelerate the electrons towards a slit, and an RF deflector turns time-ofarrival into position

Figure 2: General view of BSM.

A. Feschenko, Bunch Shape Monitors using Low Energy Secondary Electrons, PAC'92

GSI (Forck) Variant C/ CARE Conf-05-028-HIPPI

- The GSI variant uses ionization electrons instead of secondary electrons – no wire!
- Unresolved issues with background
- Space charge sensitive, since uniform electric field.

P. Forck et al, Measurement with a Novel Non-Intercepting Bunch Shape Monitor at the High Current GSI LINAC, DIPAC'05

ANL (Ostroumov) Variant

- The ANL variant uses x-rays, which are turned into electrons at a photocathode.
- Space charge not an issue
- Wire or gas target could be used.
- Needs further development

P. Ostroumov et al, Bunch Length Detector Based on X-Ray Produced Electrons, PAC'09

Issues not covered

- Synch light
- High-power faraday cups
- High power slit-grids
- Beam-in-gap diagnostics
- Electron cloud diagnostics
- •

SS is a high power proton machine, which involves

Conclusions

- ESS is a high power proton machine, which involves some particular challenges
- Recent SNS loss experiment may mean that some planned H- machines (e.g. Project X) may run protons at least part of the time.
- Particular challenges are transverse beam size and longitudinal bunch shape diagnostics.
- One of the oPAC fellows will work on this at ESS.

Thanks for your attention!

PS. We are hiring. http://www.esss.se/jobs ²⁵

The ESS Site Today

ESS Master Schedule

