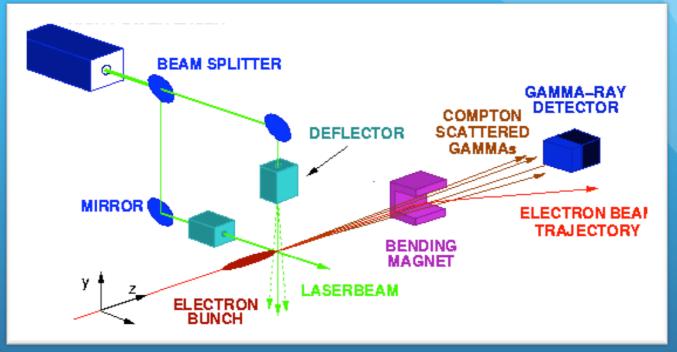
Development of a beam profile monitor using laser-wire systems

Thomas Aumeyr Royal Holloway, University of London

DITANET International Conference, 9-11 November 2011

Overview

- Measuring the transverse beam profile
- Laser-wire systems
- PETRA-III
- Laser-wire at PETRA-III: laser, optical components, DAQ
- Scan types
- Example profiles
- Outlook

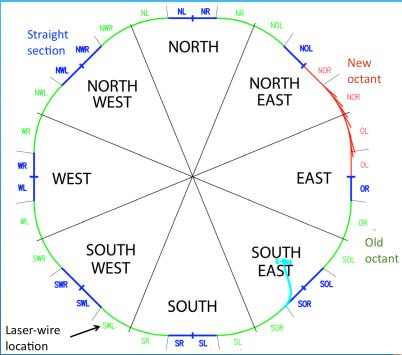

Measuring the transverse beam profile

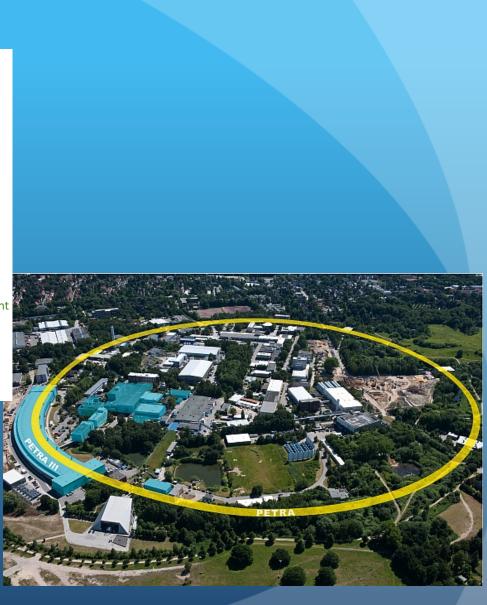
- Essential for determining transverse beam emittance.
- Traditional method is to sweep a solid wire across the beam.
- Measure background vs relative position of wire and beam.
- Micron-scale precision required for linear colliders and synchrotron machines
- Solid wires would not stand the intense beams of such machines
- Solid wires could ablate, harming surfaces nearby

Laser-wire systems

- Focused laser beam scans across particle beam
- e^{-} -machines: \rightarrow Compton Effect
 - Laser photons scattered by e⁻ are detected as gamma rays in a calorimeter
 - Scattered e⁻ over-focused by magnets
- H⁻-machines: \rightarrow Photo-ionisation of H⁻ into H⁰
 - H⁰ and/or released e⁻ detected downstream
- Plotting the change in the deposited calorimeter charge as a function of the transversal laser position → convoluted beam profile.
- Laser width must be subtracted from the convoluted profile to obtain an electron beam size measurement.

Schematic setup



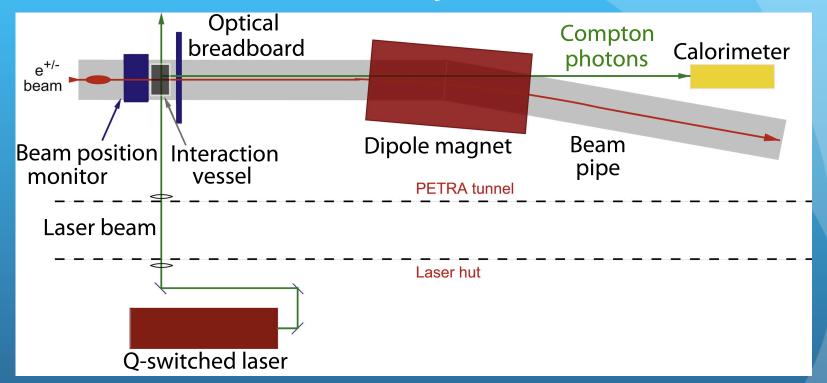

- Laser pulses synchronised with beam pulses
- Up-/downstream beam position monitors (BPMs) can be used to monitor beam fluctuations
- Post-IP power meter for laser power normalisation

PETRA-III

- Recently commissioned 2.3km storage ring at DESY, Hamburg
- High brilliance synchrotron light source
- Runs 6 GeV positrons, grouped into 40 bunches/100mA, evenly distributed over the ring, with 192 ns spacing
- Understanding emittance important to achieve ultimate performance
- Beam sizes x/y/z: 200 µm / 20 µm / 40 ps

PETRA-III

PETRA-III


3rd generation synchrotron radiation source

Parameter		Value		Unit
Energy	Е	6		[GeV]
Circumference	С	2304		[m]
Horizontal emittance	ε _x	~1		[nmrad]
Vertical emittance	ε _y	~0.01		[nmrad]
Train repetition rate	f	130.2		[kHz]
Number of bunches per train	N _{train}	960	(40)	
Interbunch spacing		8	(192)	[ns]
Bunch length RMS	L _b	~12		[mm]
Number of electrons per bunch	N _e	0.25	(12)	×10 ¹⁰

Laser-wire @ PETRA-III

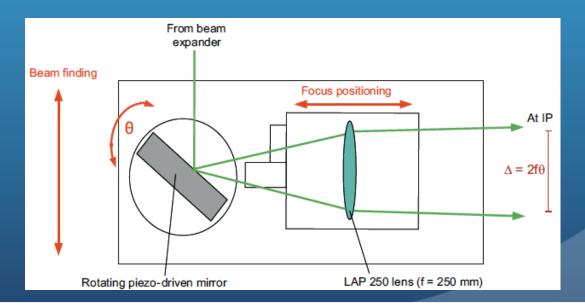
- Installed in early 2009
- Green laser light (λ =532 nm)
- Using a vertical optical table: vertical and horizontal scans possible
- Current emphasis:
 - Integrating into PETRA system
 - Taking and analysing data in the context of P3 optimisation

Overview of LW layout

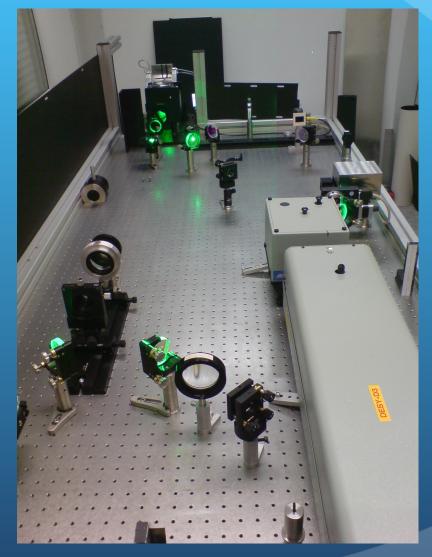
The laser-wire system at PETRA-III is 2D bunch profiler: laser beam can be sent to collision in horizontal or vertical plane.

Laser

- Nd:YAG laser (1064 nm, frequency doubled)
- Linearly polarised laser intensity is controlled using a waveplate

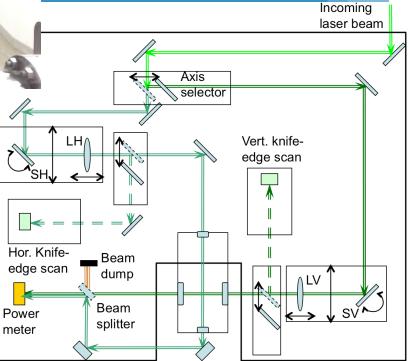

Parameter	Value	Unit
Pulse energy at 532 nm	60 ± 5	mJ
Peak power at 532 nm	12 ± 1	MW
Repetition rate	20	Hz
Pulse duration	5 ± 1	ns
RMS pulse jitter (rel. to ext. trigger)	1	ns
Mode quality factor (M ²)	2.68 ± 0.05	
Horizontal angular jitter	18.8	µrad
Vertical angular jitter	9.4	µrad

Optical scanning components


- 2" high reflective static mirrors, 2 scanning mirrors
- Horizontal scan: 750 mm lens
- Vertical scan: 250 mm lens
- 3 webcams with alignment crosses (monitor laseralignment remotely)

Scanning mirrors

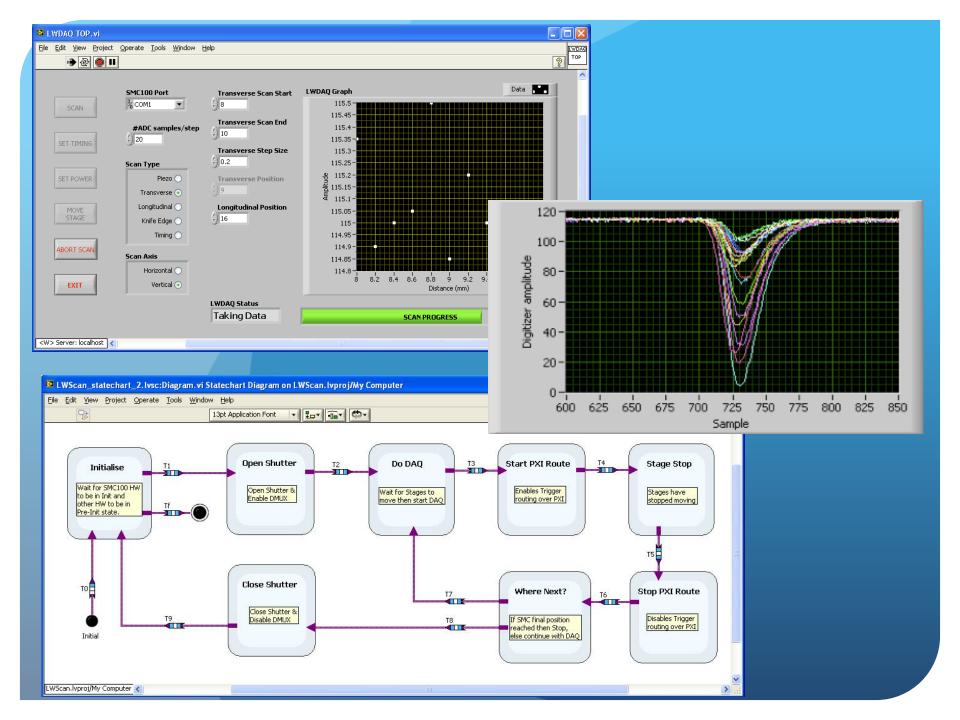
- Mounted on translation stages
- 2" multilayer coated mirror mounted on piezo-electric stack
- Deflection by max. angle of 2.5 mrad (with 100 V applied voltage)
- Vrange 1.25mm; Hrange 3.75mm


Laserhut

Breadboard

During shutdown in May 2009 motorised translation stages were positioned with laser aligned for IP.

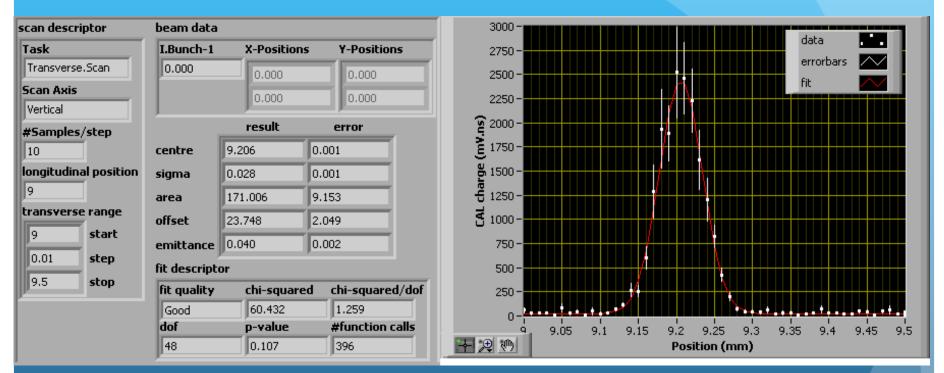
Calorimeter



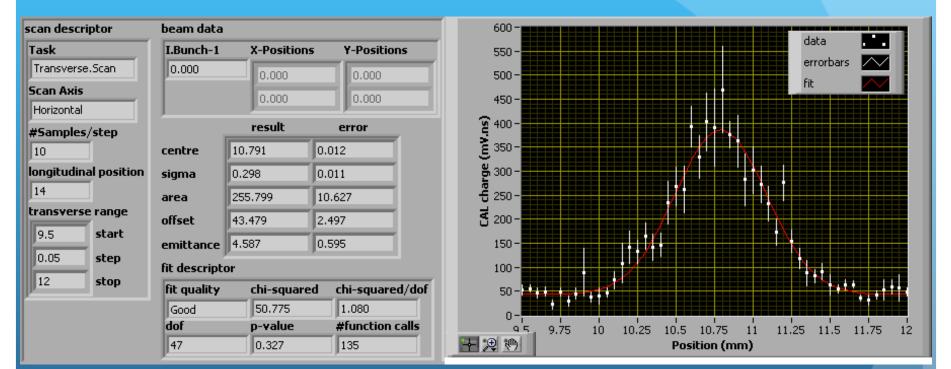
- 9 lead tungstate crystals (18 x 18 x 150 mm) arranged in 3x3 matrix
- Scintillation light detected by photomultiplier (PMT)
- Lead housing to shield from stray synchrotron light

LWDAQ hardware

• Uses National Instruments (NI) PXI system


- 2 GS/s two-channel digitizer (PXI-5152)
- Precision timing module (PXI-6653)
- General-purpose DAQ (PXI-6251)
- accesses other HW via RS232 & GPIB
- Written in LabVIEW (v8.5) with Statechart and DSC modules
- Reads TINE database for local BPM positions, current etc.

Scan Types


- Transverse scan using piezo
 - Scanning range: < 1 mm
 - After moving the stages into place: 20 steps and 5 shots per step = 5 * 50ms * 20 = 5s
- Transverse scan using motorised stage
 - Scanning range: 25 mm
 - 500 ms overhead for stepping the stages:
 20 steps and 5 shots per step = (5 * 50ms + 500ms) * 20 = 15s
- Longitudinal scan using motorised stage
- Knife-edge scans to check waist and Rayleigh range of laser
- Can adjust laser timing and laser power

Vertical scan

470 μA bunch current 10 Samples/Step

Horizontal scan

470 μA bunch current 10 Samples/Step $\begin{array}{l} \mu = 10.791 \pm 0.012 \mbox{ mm} \\ \sigma = 0.298 \pm 0.011 \mbox{ mm} \\ X^2/dof = 1.080 \end{array}$

Outlook

- More automatic operation of LWDAQ (self-optimising scans, beam finding, laser timing adjustments, piezo calibration, etc.)
- Online analysis of beam size (understanding other errors and including corrections)
- Benchmarking studies: measuring machine characteristics (dispersion, compaction factor, beta functions, etc.)
- Displaying results (BKR, TINE)

Thank you for your attention!

Any questions?