

### Kendall Mahn, Michigan State University







The T2K (Tokai-to-Kamioka) and NOvA (NuMI off-axis  $v_e$  appearance) experiments are accelerator based neutrino oscillation experiments



- Accelerator-driven neutrino (or antineutrino beam) on one side of a country
  - J-PARC in Tokai
  - Main Injector (NuMI) at Fermilab



- Accelerator-driven neutrino (or antineutrino beam)
- Detectors 'near' to the neutrino source
  - T2K suite of three detectors "on and off axis", that is, the proton beam direction
  - NOvA "ND" is off axis



Key features:

- Accelerator-driven neutrino (or antineutrino beam) on one side of a country
- Detectors 'near' to the neutrino source
- 'Far' detectors hundreds of kilometers away
  - Enormous Water Cherenkov detector Super-Kamiokande Ο
  - Enormous liquid scintillator detector Ο



'Far' detectors hundreds of kilometers away



#### Current landscape of neutrino oscillation

Recent results from T2K and NOvA, and T2K+NOvA, in a global context

What do we know about neutrino oscillation?



Flavor states

Mass states

Caption box

Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS)

If U is unitary, 3 mixing angles ( $\theta_{12} \theta_{23} \theta_{13}$ ) and one phase ( $\delta_{CP}$ )

What do we know about neutrino oscillation?



Probability to oscillate from flavor  $v_{\alpha}$  to  $v_{\beta}$  and depends on:

- U elements (and therefore  $\theta_{23}$ ,  $\delta_{CP}$ ) and mass splitting  $\Delta m_{32}^2$
- L 'Baseline' T2K is 295km, NOvA is 810km
- E neutrino energy T2K peak energy is ~0.6 GeV, NOvA is ~2 GeV

### Open questions about neutrino oscillation

### Is CP-invariance violated in neutrino oscillations?

-  $\delta_{CP} = 0, \pi?$ 

- Is  $v_3 \mod v_{\mu} \text{ or } v_{\tau}$ ? ( $\theta_{23}$  "octant")  $\sin^2(\theta_{23}) > 0.5$ , < 0.5, or  $\sin^2(\theta_{23}) = 0.5$ ?
  - Is there an underlying symmetry to this matrix?

### What is the neutrino mass ordering? (mass hierarchy)

- Is  $v_3$  the heaviest?

Caption box

André de Govêa: "Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter

Space)" **Snowmass Neutrino** 

Colloquium

### Open questions about neutrino oscillation



Neutrino mass squared (m<sub>i</sub><sup>2</sup>)

What is the neutrino mass ordering? (mass hierarchy)

- Is  $v_3$  the heaviest?
- "Normal" mass ordering:  $\Delta m_{32}^2 > 0$
- "Inverted" mass ordering:  $\Delta m_{32}^2 < 0$

Caption box

### Open questions about neutrino oscillation





What is the neutrino mass ordering? (mass hierarchy)

- Is  $v_3$  the heaviest?
- "Normal" mass ordering:  $\Delta m_{32}^2 > 0$
- "Inverted" mass ordering:  $\Delta m_{32}^2 < 0$

Sensitivity the mass ordering from interactions of  $v_e$  (and electrons) in matter - *complementary to JUNO* 

Mass ordering important to cosmology, and astrophysics, neutrinoless double beta decay <sup>12</sup>

### Probability depends on mass ordering, CP effect

Caption box

 $\nu_{\rm \mu} \rightarrow \nu_{\rm e}$  appearance is sensitive to all open questions

Normal ordering enhances  $v_e$  appearance and inverted ordering suppresses it



### Probability depends on mass ordering, CP effect

Caption box

 $\nu_{\rm \mu} \rightarrow \nu_{\rm e}$  appearance is sensitive to all open questions

Normal ordering enhances  $v_e$  appearance and inverted ordering suppresses it

The opposite is true for  $\overline{v_{e}}$  appearance



### Probability depends on mass ordering, CP effect

Caption box

 $\nu_{\rm \mu} \rightarrow \nu_{\rm e}$  appearance is sensitive to all open questions

CPV also enhances  $\nu_{\rm e}$  appearance and suppresses  $\overline{\nu}_{\rm e}$  appearance





Baseline and energy change the oscillation probability - *T2K* has a larger (relative)  $\delta_{CP}$  effect, NOvA larger mass ordering effect



Baseline and energy change the oscillation probability - *T2K* has a larger (relative)  $\delta_{CP}$  effect, NOvA larger mass ordering effect



### Probabilities to reality: CP effect



### Probabilities to reality: mass splitting, octant



Event rates are used to infer oscillation parameters

- Example: NOvA results on mass splitting and  $\theta_{23}$  octant [arxiv - 2311.07835]



20



We can use different experimental conditions (L, E) to learn more about neutrino oscillation - *combinations of experiments break degeneracies in*  $\theta_{23}$ /mass ordering/CP

### Disentangling neutrino oscillation



Example: in normal ordering, T2K and NOvA favor different oscillation values in  $\theta^{}_{23}/\delta^{}_{CP}$ 

Caption box

### Disentangling neutrino oscillation

Caption box



Example: in normal ordering, T2K and NOvA favor different oscillation values in  $\theta_{23}/\delta_{CP}$ 

In the inverted ordering however, the two experiments are consistent

### T2K+NOvA joint fit overview

Caption box

Joint analysis of 2020 datasets includes:

- Full energy reconstruction and detector response, detailed likelihood from each experiment
- Consistent statistical inference across the full dimensionality ( $\Delta m^2_{\ 32}$ ,  $\theta_{23}$ ,  $\theta_{13}$  mass ordering,  $\delta_{CP}$ )

Collaborations worked together on identifying detector, flux and cross section model commonalities, possible correlations

While accommodating different analysis approaches driven by different experimental designs

### T2K+NOvA joint fit overview



While accommodating different analysis approaches driven by different experimental designs

- The other experiment's likelihoods are integrated via a containerized environment.
- Individual experimental models, extrapolation are used

### T2K+NOvA joint fit details

Collaborations worked together on identifying detector, flux and cross section model commonalities, possible correlations

- No significant flux nor detector correlations expected
- The underlying physics of neutrino interactions is the same - *tests done to assess role of model and correlation choices*
- Correlation between key systematic  $[v_{\rm e}/\overline{v}_{\rm e}/v_{\rm \mu}/\overline{v}_{\rm \mu}\sigma]$  included



Caption box

# T2K+NOvA: goodness of fit

- The data from both experiments is described well (p-value = 0.75) by the joint fit results
  - Individual experimental models are used with shared oscillation parameters

| Channel               | NOvA | T2K                           |
|-----------------------|------|-------------------------------|
| $\nu_{e}$             | 82   | <b>94</b> (v <sub>e</sub> )   |
|                       |      | <b>14</b> (ν <sub>e</sub> 1π) |
| $\overline{v}_{e}$    | 33   | 16                            |
| $ u_{\mu}$            | 211  | 318                           |
| $\overline{ u}_{\mu}$ | 105  | 137                           |



# T2K+NOvA results: mixing angles

- Joint fit is consistent with reactor values of  $\theta_{23}$ 



# T2K+NOvA results: mixing angles

- Joint fit is consistent with reactor values of  $\theta_{23}$
- Using reactor experiment information [PDG] lifts θ<sub>23</sub> degeneracy and provides a weak preference for the upper octant
- Without reactor (54% lower octant / 46% upper octant)
- With reactor (78% upper octant, 22% lower octant)



### T2K+NOvA results: mass ordering, splitting

- The experiments individually have preference for normal ordering
  - T2K p~0.81 for normal ordering
  - NOvA 1.0 σ for normal ordering
- The NOvA-T2K joint fit has no strong preference for ordering
  - Inverted ordering ~58%
  - Normal ordering ~42%



Caption box

# T2K+NOvA results in global landscape: mass splitting



[2] K.Abe et al. (T2K) Eur.Phys.J.C 83 (2023) 9, 782
[3] M.A.Acero et al. (NOVA) Phys.Rev.D 106 (2022) 3, 032004
[4] P. Adamson et al. (MINOS+), Phys. Rev. Lett. 125, 131802
[5] A. Eguchi, SuperK+T2K talk at NNN-2023, p. 65.
[6] R. Abbasi et al. (IceCube), Phys. Rev. D 108, 012014 (2023),

# T2K+NOvA results in global landscape: mass splitting



[2] K.Abe et al. (T2K) Eur.Phys.J.C 83 (2023) 9, 782
[3] M.A.Acero et al. (NOVA) Phys.Rev.D 106 (2022) 3, 032004
[4] P. Adamson et al. (MINOS+), Phys. Rev. Lett. 125, 131802
[5] A. Eguchi, SuperK+T2K talk at NNN-2023, p. 65.
[6] R. Abbasi et al. (IceCube), Phys. Rev. D 108, 012014 (2023),





### The broader program: neutrino cross sections

#### Energy regime: 0.1-20 Gev



#### Interesting physics

BSM: sterile neutrinos, light dark matter, NSI, precision tests of SM

Three flavor oscillation:  $\theta_{23}$  octant, mass hierarchy, CP violation. Tests of neutrino mixing model

More BSM: proton decay

Cross section measurements allow us to iterate with theory and community on model development, completeness relevant to a broad set of physics programs

Caption box



Recent example (T2K) using ND280 and INGRID near detectors [PRD108, 112009]

- Correlations in the neutrino source (flux) provide a strong constraint on models
- Difficulty in accommodating forward suppression at ND280 not seen at INGRID

### The broader program: non-standard interactions (NSI)

NSI would, like the mass ordering, modify the oscillation probability



Caption box

### The broader program: non-standard interactions (NSI)

NSI would, like the mass ordering, modify the oscillation probability and the interpretation of (standard) oscillation parameters

Example from NOvA [arxiv <u>2403.07266</u>]





Caption box

T2K and NOvA are accelerator driven neutrino experiments:

- Experiments have led the discovery of CC  $v_{e}$  and  $\overline{v_{e}}$  appearance
- T2K, NOvA are complementary to each other and global (reactor, atmospheric) three flavor neutrino oscillation program
- Both experiments have rich cross section, exotic physics programs
- A recent joint analysis effort of 2020 datasets from T2K and NOvA determined:
  - No strong preference for the mass ordering
  - Normal ordering allows for a wide range of  $\delta_{CP}$  values; inverted ordering CP conserving values fall outside of the 3 $\sigma$  credible intervals

### Outlook

Caption box

Both T2K and NOvA continue to collect data and improve individual analyses

- Data expected from both experiments expected to double in coming years before DUNE and Hyper-Kamiokande (next generation experiments) turn on
- T2K upgraded ND280 for better understanding of *v* interactions; upgraded J-PARC accelerator (760kW!)
- NOvA is collecting more anti-neutrino data and has already doubled neutrino data
- Please see poster session and talks in the neutrino track

T2K and NOvA have produced their first joint analysis of data from both experiments

• Established collaboration and knowledge sharing; scope and timeline are being explored for subsequent joint analyses





Thanks to both collaborations!



Speaker supported by DOE award - DE-SC0015903

### Backup

Some backup slides helpfully prepared by J. Walsh

# T2K+NOvA results:



# T2K+NOvA results:





## 2D DayaBay constraint

|                  | <b>No</b> Reactor              | <b>1D</b> Reactor              | <b>2D</b> Reactor            |
|------------------|--------------------------------|--------------------------------|------------------------------|
|                  | Constraint                     | Constraint                     | Constraint                   |
| Mass<br>Ordering | 2.45<br>71% : 29%<br>(IO : NO) | 1.38<br>58% : 42%<br>(IO : NO) | 1.44<br>59% : 41%<br>(NO/IO) |
| Octant           | 1.17                           | 3.58                           | 3.219                        |
|                  | 54% : 46%                      | 78% : 22%                      | 76% : 24%                    |
|                  | (LO : UO)                      | (UO : LO)                      | (UO : LO)                    |

Posterior density





# Super-K + T2K joint result

Another analysis combined beam and atmospheric neutrino data from the Super-Kamiokande and T2K experiments

Atmospheric neutrinos have sensitivity to different mass ordering and CPV effects

Super-K is the T2K far detector:

Same detector

Shared modelling and analysis infrastructure



A. Eguchi, NNN2023, SK+T2K combined analysis

• SK atmospheric covers a wider range of energies than T2K.

• Use different models for low-energy and high-energy samples.



|          | <b>Low-energy</b><br>sub-GeV atm + beam                                                           | High-energy<br>multi-GeV atm                                                  |  |
|----------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
|          | T2K model with ND280 constraint,<br>correlated in low-E/highE (except for high-Q <sup>2</sup> )   |                                                                               |  |
| CCQE     | high-Q² params w/ND280                                                                            | high-Q <sup>2</sup> params w/o ND                                             |  |
|          | add $v_e/v_\mu$ ratio unc. (CRPA)                                                                 |                                                                               |  |
| 2p2h     | T2K model w/ND280                                                                                 | SK model (100% error)<br>+ T2K-style shape                                    |  |
| Resonant | T2K model w/ND280<br>+ new pion momentum dial<br>+ NC1π0 uncertainties                            | SK model<br>for 3 dials common with T2K,<br>use more recent larger T2K priors |  |
| DIS      | T2K model w/ND280                                                                                 | SK model                                                                      |  |
| ντ       | SK model (25% norm<br>for other systematics checked that we                                       | on top of other syst)<br>have no numerically unstable values                  |  |
| FSI      | T2K model w/ND280                                                                                 | T2K model w/o ND280<br>should be mostly same as SK model                      |  |
| SI       | T2K model, correlated in low-E/high-E<br>only applied to FC and PC for atm, PN not applied to atm |                                                                               |  |

A. Eguchi, NNN2023, SK+T2K combined analysis

SK atmospheric covers a wider range of energies than T2K.

• Use different models for low-energy and high-energy samples.

- Low energy (beam and atmospheric Sub-GeV samples)
  - Use the T2K model [ref] as the base which is constrained by the T2K near detector.
  - Some extra parameters are added to cover important uncertainties for the atmospheric analysis.
- High energy (rest of atmospheric samples)
   Use a modified SK model [ref] including additional systematics uncertainties.

|          | <b>Low-energy</b><br>sub-GeV atm + beam                                                                               | High-energy<br>multi-GeV atm                                                  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
|          | T2K model with ND280 constraint,<br>correlated in low-E/highE (except for high-Q <sup>2</sup> )                       |                                                                               |  |
| CCQE     | high-Q <sup>2</sup> params w/ND280                                                                                    | high-Q <sup>2</sup> params w/o ND                                             |  |
|          | add $v_e/v_\mu$ ratio unc. (CRPA)                                                                                     |                                                                               |  |
| 2p2h     | T2K model w/ND280                                                                                                     | SK model (100% error)<br>+ T2K-style shape                                    |  |
| Resonant | T2K model w/ND280<br>+ new pion momentum dial<br>+ NC1π0 uncertainties                                                | SK model<br>for 3 dials common with T2K,<br>use more recent larger T2K priors |  |
| DIS      | T2K model w/ND280                                                                                                     | 80 SK model                                                                   |  |
| ντ       | SK model (25% norm on top of other syst)<br>for other systematics checked that we have no numerically unstable values |                                                                               |  |
| FSI      | T2K model w/ND280                                                                                                     | T2K model w/o ND280<br>should be mostly same as SK model                      |  |
| SI       | T2K model, correlated in low-E/high-E<br>only applied to FC and PC for atm, PN not applied to atm                     |                                                                               |  |

50

### SK+T2K combined results - shown at NNN



Combined results are consistent with T2K-only results in  $\delta_{CP}$  - publication in preparation

- Weak preference for normal mass ordering MO (Bayes factor is  $\sim 9.0, 1.6\sigma$ )
- Different experimental preferences in  $\theta_{23}$  octant is resolved in joint fit

#### New oscillation result Jarlskog invariant

#### C. Bronner, Neutrino 2022

- Can search for potential CP violation by looking at the posterior probability and credible intervals for J<sub>CP</sub>
- $\succeq$  Results depend on the metric in which we assume the prior for  $\delta$  to be uniform



Now available for T2K, NOvA and T2K+NOvA and T2K+SK

# Fake Data Studies

Test for out-of-model effects which could bias results

Generate "fake data" – a modified set of the nominal MC to include variations not deliberately included inthe uncertainty model

Fit T2K model to fake data at ND280 - use post-ND280 constrained flux+xsec model to fit SK fake data in joint fit

Use NOvA ND to build tuned response templates for NOvA FD in joint fit

Check shifts in credible interval positions and sizes are not large relative to systematic uncertainty contribution

Perform this procedure at key several different oscillation parameter combinations of interest



Posterior density

# **Correlation Studies**

Test for impact of missing cross-experiment correlations or erroneously implementing correlations between parameters

Construct "nightmare parameters" which take parameters known to have strong correlations with the oscillation parameters and enhance their impact

Fit fake data sets where these parameters are moved together are fit under the assumption of correlation or anticorrelation





### T2K analysis reminder - analysis flow





We determine oscillation parameters from event rates (at our 'far' detector, SK)

- Uses neutrino source (flux,  $\Phi$ ), cross section ( $\sigma$ ), and detector (efficiency) models
- Models built from theory, beam monitors and key external measurements
- Model tested against near detector data



Phys.Rev.D 105 (2022) 3, 032010

2108.11779 [hep-ex]



Joe Walsh, Michigan State University

#### NOvA POT used in this

#### analysis

![](_page_58_Figure_2.jpeg)

### **2020 Individual Results**

![](_page_59_Figure_1.jpeg)

# NOvA and T2K similarities and differences

|                           | т2К                                                                            | NOvA                                                                                                                |
|---------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Baseline                  | 295 km                                                                         | 810 km                                                                                                              |
| Beam spectrum peak        | 0.6 GeV                                                                        | 2 GeV                                                                                                               |
| Interactions              | Mostly QE, 2p2h and RES backgrounds                                            | Mixture of QE, 2p2h, RES, DIS etc                                                                                   |
| Near Detector target      | Plastic scintillator with some water                                           | Organic liquid scintillator                                                                                         |
| Far Detector Target       | Water                                                                          | Organic liquid scintillator                                                                                         |
| Near Detector principle   | Magnetized<br>Plastic Scintillator and<br>Gaseous Argon TPC tracker            | Segmented Liquid Scintillator Tracker                                                                               |
| Far Detector principle    | Water Cherenkov<br>Under a mountain<br>~1km rock overburden                    | Segmented Liquid Scintillator Tracker<br>Sits on surface                                                            |
| Near-to-far extrapolation | Fit model to ND data and propagate best-fit model parameters and uncertainties | Large overlap in systematics allows for<br>direct cancellation and use of ND-tuned<br>model to build FD predictions |
| Neutrino energy estimator | Lepton Kinematics<br>(Assume elasticity)                                       | Sum of lepton and hadronic energy<br>(Momentum by range and calorimetry)                                            |

![](_page_61_Figure_0.jpeg)

![](_page_62_Figure_0.jpeg)

T2K 2020

#### Samples

| Target Mode  | ND280<br>Samples      | SK Samples            | ND280<br>Total of 18 samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|-----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCQE (+2p2h) |                       |                       | Split by reco pion topology for<br>Dedicated samples for $v$ ever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CCRes        |                       |                       | wrong-sign contamination for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                       |                       | SK<br>total of 5 samples<br>4 single rings samples for eac<br>Dedicated sample to tag low-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | CCQE (+2p2h)<br>CCRes | CCQE (+2p2h)<br>CCRes | IndiceND200Six SamplesSamplesSamplesCCQE (+2p2h)Image: Image: |

SK Cannot distinguish between  $\nu$  and  $\bar{\nu}$  in most cases

or v-beam and  $\overline{v}$ -beam nts in  $\bar{\nu}$ -beam

ter leads to larger  $r \bar{\nu}$ -beam

ch mixing channel  $-p_{\pi}$  CC1 $\pi$  events from decay to Michel Electron

T2K 2022 split v-beam CC0pi events at ND280 by presence of reconstructed ejected proton as well as a dedicated CC-photon sample to constrain potential  $v_e$  backgrounds, and an additional multi-ring  $v_{\mu}$  sample at SK targeting CC1pi events

NOvA Hadronic Energy Quartiles

NOvA data split by relative fraction of hadronic energy in total neutrino energy estimator

Done separately for nu/nubar

![](_page_64_Figure_3.jpeg)

![](_page_65_Figure_0.jpeg)

![](_page_66_Figure_0.jpeg)

## The Jarlskog prior dependence

![](_page_67_Figure_1.jpeg)