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PRE-LHC — A FOCUS ON THE PEAKS OF HIGH ENERGY PHYSICS

▸ THE WIMP and the axion
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WE HAVEN’T FOUND NEW PHYSICS

▸ Further advances in accelerator physics are on long 
timescales


▸ But, collider experiments are not dark matter experiments



PROTON COLLIDERS ARE COLORED PARTICLE MACHINES

▸ Direct constraints on electroweak multiplet states (to 
which WIMP DM belongs) are comparatively weak



WIMPS THROUGH INDIRECT DETECTION

▸ Relic abundance considerations for DM (generally)  


▸ Naive back-of-the-envelope for WIMPs: 

DM

DM SM

SM

⇢DM = ⇢obs
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Figure 38: Tree level diagrams for neutralino annihilation into gauge boson pairs.
From Ref. [319].

U =

(
cosφ− − sinφ−
sinφ− cosφ+

)
(181)

and

V =

(
cosφ+ − sinφ+

sinφ+ cosφ−

)
, (182)

where

tan 2φ− = 2
√

2mW
(µ sinβ + M2 cosβ)

(M2
2 − µ2 + 2m2

W cos 2β)
(183)

and

tan 2φ+ = 2
√

2mW
(µ cosβ + M2 sinβ)

(M2
2 − µ2 − 2m2

W cosβ)
. (184)

The amplitude for annihilations to Z0-pairs is similar:

A(χχ→ Z0Z0)v→0 = 4
√

2 βZ
g2

cos2 θW

4∑

n=1

(
O′′L

1,n

)2 1

Pn
. (185)

Here, βZ =
√

1 − m2
Z/m2

χ, and Pn = 1 + (mχn/mχ)2 − (mZ/mχ)2. The sum is

over neutralino states. The coupling O′′L
1,n is given by 1

2 (−N3,1N∗
3,n +N4,1N∗

4,n).
The low velocity annihilation cross section for this mode is then given by

σv(χχ → GG)v→0 =
1

SG

βG

128πm2
χ

|A(χχ → GG)|2, (186)

where G indicates which gauge boson is being considered. SG is a statistical
factor equal to one for W+W− and two for Z0Z0.

It is useful to note that pure-gaugino neutralinos have a no S-wave annihi-
lation amplitude to gauge bosons. Pure-higgsinos or mixed higgsino-gauginos,
however, can annihilate efficiently via these channels, even at low velocities.
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WIMPS THROUGH INDIRECT DETECTION AT CHERENKOV TELESCOPES

▸ EW doublet and triplet states


▸ Cherenkov telescopes have (unique) sensitivity to such 
weak dark matter    

Rinchiuso et al 2008.00692
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Figure 4. Expected 95% C.L. upper limits on the Wino annihilation cross section as a function of its mass for 500 h of CTA
observations towards the GC. The predicted NLL cross section is shown (solid gray line) and the thermal Wino DM mass is
marked (cyan solid line and bands). The only background considered here is the residual background. The full Wino spectrum
is included in the expected signal. Left panel: The expected limits for an Einasto profile (red solid line) are shown together
with the 1� (green band) and 2� (yellow band) containment bands. Right panel: The expected limits are shown for cored DM
profiles of size from 300 pc to 5 kpc.

ploy below). For the sensitivity studies in the present
work, we keep b�,ijk fixed in the form of the model de-
rived from Eqs. (14-15), so that our background model
contains no free parameters. As such, once the DM mass
and model (e.g. whether it is a Wino or Higgsino) is
specified, the only free parameter in the signal model
and likelihood is an overall signal normalization factor
controlled by h�viline.

The likelihood function is binned in energy (indexed
by i), Galactic longitude (indexed by j) and Galactic lat-
itude (indexed by k). The total likelihood is the product
of Lijk over the 20 energy bins and 400 spatial bins. In
our case the background b�,ijk is modeled rather than be-
ing measured in an OFF region, as explained in Sec. IVC,
and as mentioned above the background model contains
no free parameters (we do not allow its normalization, for
example, to vary).6 The sensitivity is expressed here as
the expected limit obtained under the assumption that
m�,ijk contains no DM signal. Values of h�viline are
tested through the likelihood ratio test statistic profile

6 The future telescope pointing strategy of CTA that will be imple-
mented to survey the GC region will define optimized pointing
positions of the telescopes to most e�ciently survey the GC re-
gion, together with the OFF regions where the background will
be measured for each observation. This discussion is beyond the
scope of this work.

defined as:

⇤ijk =
Lijk(s�,ijk + b�,ijk,m�,ijk)

Lijk(ŝ�,ijk + b�,ijk,m�,ijk)
. (17)

In the ratio, only the amplitude of s�,ijk is a free param-
eter, and therefore this quantity is solely a function of
the cross section h�viline. In the denominator we fix the
signal flux normalization to the value which maximises
the likelihood, denoted by ŝ�,ijk. Using Eq. (17), we can
then define a test statistic for setting upper limits as

q(h�vi) =

(
�
P

ijk 2 ln⇤ijk h�vi � dh�vi ,
0 h�vi < dh�vi ,

(18)

where the cross section is again h�viline, and here dh�vi
corresponds to the value of the cross section where the
best fit signal is achieved, in detail the value that deter-
mined ŝ�,ijk as in the denominator of Eq. (17). As the
cross section is increased, eventually the signal strength
will become incompatible with the data and q will be-
gin to increase. The value of h�viline excluded at 95%
confidence level corresponds to q ⇡ 2.71, when comput-
ing one-sided upper limits. Note that this prescription
uses Wilks’ theorem, and as such requires that we allow
h�viline to float negative, as if the background fluctuates
below its mean, the best fit signal point can be negative.
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Figure 6. Top panels: 95% C.L. upper limits on the line Higgsino annihilation cross section as a function of its mass for the
Einasto profile (red solid line) and cores of size from 300 pc to 5 kpc. The theoretical cross section is printed in gray. Top left
panel: Limits computed assuming mass splittings �mN = 200 keV and �m+ = 350 MeV. Top right panel: Limits computed
assuming mass splittings �mN = 2 GeV and �m+ = 480 MeV. Bottom panels: 95% C.L. expected mean upper limits for CTA
on the Higgsino annihilation cross section as a function of its mass, for an Einasto DM profile and 500 hour homogeneous
exposure in a 10�-side squared region centered at the GC region. The expected limits (red solid line) are shown together with
the 1� (green band) and 2� (yellow band) containment band obtained from the Asimov dataset. Only the residual background
is considered here. The predicted LO cross section is shown (solid gray line) and the thermal Higgsino DM mass is marked
(cyan solid line and bands). The sensitivity is computed for the mass splittings �mN = 200 keV and �m+ = 350 MeV (bottom
left panel) and �mN = 2 GeV and �m+ = 480 MeV (bottom right panel). The line-only constraints are shown as red dotted
lines.

which spatial regions have the greatest sensitivity to the
DM signal. Consequently, the degree to which the lim-
its vary with core size could change depending on the
spatial morphology of the background. Equivalently, the
degree to which the astrophysical backgrounds weaken

the limits may depend on the assumed core size. For
example, background features occurring a few degrees
from the GC might have a negligible e↵ect for peaked
density profiles with small cores, but a larger impact for
few-kpc cores. Fig. 8 shows the CTA expected mean

Challenge #1

Figure 4: Dominant diagram in the Wino- or Higgsino-like neutralino annihilation at

O(ααn
2 ), in which n weak gauge bosons are exchanged.

Thus, the one-loop cross section exceeds the bound for the extremely heavy neu-

tralino. It means that the higher-order corrections should be included. The domi-

nant higher-order contribution comes from the ladder diagrams. The n-th order (αn
2 )

ladder diagram, in which n weak gauge bosons are exchanged, is depicted in Fig. 4.

The corresponding amplitude An of the diagram is roughly given by

An ! α

(

α2m

mW

)n

. (12)

When the neutralino mass m is large enough, the diagrams are enhanced by a factor

of α2m/mW for each weak gauge boson exchange. The higher-order loop diagrams

become more and more important when α2m >∼mW .

Enhancement of ladder diagrams in non-relativistic limits is related to a threshold

singularity. Recall that a threshold singularity appears in the non-relativistic µ+µ−

pair annihilation cross section. When the relative velocity v of the muon pair is

smaller than α, the amplitude of the n-order ladder diagram, in which n photons are

exchanged between the muon pair, is proportional to α(α/v)n, and the perturbative

expansion by α breaks down. The internal muons are close to non-relativistic on-

shell states. The muon and photon propagaters are proportional to 1/v2 and each

loop integration gives αv5. Thus, the diagrams are enhanced by α/v for each photon

exchange. This is because the kinetic energy of muon pair, mµv2/4, is smaller than

the Coulomb potential energy, α2mµ, and the wave function of the incident particles

is deformed from plane waves. We need to systematically resum the ladder diagrams

or to use the wave function under the Coulomb potential in order to get the precise

annihilation cross section.

In the non-relativistic EWIMP pair annihilation, the sub-diagram corresponding

to the process χ̃0χ̃0 → χ̃+χ̃− in each ladder diagram is very close to the threshold

10
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WIMPS THROUGH DIRECT DETECTION

10 Direct Detection Program Roadmap 39
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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DIRECT DETECTION — PURE STATES HARD TO DETECT

▸ “Pure” neutralino does not 
couple to Higgs at tree 
level, e.g. pure Wino or 
Higgsino or Bino


▸ One-loop: wino may be 
detectable with XLZD/
DARWIN


▸ It’s still important to finish the 
large-scale DD program to the 
neutrino fog (Challenge #2)

g̃ q

q̃

(a)

W̃ qL, !L, H̃u, H̃d

q̃L, !̃L, Hu, Hd

(b)

B̃ q, !, H̃u, H̃d

q̃, !̃, Hu, Hd

(c)

Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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Figure 4: The WIMP-proton scattering cross section as a function of WIMP mass M for a Majorana
WIMP (left panel) and a scalar WIMP (right panel), which correspond to the cH values in Eqs. (3) and (5),
respectively. The inner band is the cross section obtained from the scalar and tensor amplitudes computed
through O(1/M). The outer band includes an estimate for the O(1/M2) contributions. The neutrino
floor for both Argon and Xenon direct detection experiments are from Ref. [48], and are shown by black
solid lines; our extrapolation to larger masses is denoted with black dashed lines. Also shown with solid
lines are the current bounds from LUX [49], XENON1T [50], and PandaX-II [51]. Projected sensitivities
of future experiments are shown with dotted lines: DEAP-3600 [52], XENON1T and XENONnT [53],
LZ [54], and DARWIN [55].

cross sections for scattering on protons or neutrons are identical:5

�p ⇡ �n =
m2

r

⇡
|M

(0)
p + M

(2)
p |

2 , (11)

where mr = mpM/(mp + M) ⇡ mp is the reduced mass of the WIMP-nucleon system. In Fig. 4 we show
the cross section including first order power corrections as a function of M for a fundamental fermion,

Eq. (3), and for a composite scalar, Eq. (5). The central value amplitudes, in units with M
(2)
p |M!1 = 1,

are

M
(2)
p = 1 � 0.52

mW

M
, M

(0)
p = �0.81 � 0.50

cH

3↵2
2

mW

M
. (12)

The numerical evaluation (12) exhibits the partial cancellation of the universal M ! 1 result. For the
Majorana fermion case, where cH = �3↵2

2, the mW /M power correction also exhibits a surprising cancel-
lation. The impact of neglected higher-order power corrections is estimated by including an uncertainty

in the tensor amplitude as M
(2)
p / M

(2)
p |M!1

⇥
1 ± (mW /M)2

⇤
. At large mass, the power corrections

vanish, and the universal result with central value and uncertainty from Ref. [32] is reproduced. At finite

5 The Wilson coe�cients c
(S)
u and c

(S)
d in Eq. (8) are identical. The light quark operators in Eq. (6) thus appear in the

combinations O(S)
u +O

(S)
d , whose proton and neutron matrix elements are identical up to isospin violating corrections. These

percent level corrections, proportional to ↵ ⇡ 1/137 or (mu � md)/⇤QCD, are subdominant in the error budget for M(S)
N .

See Ref. [32] for details.
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Figure 2: Diagrams contributing to 1/M quark matching, with the same notation as in Fig. 1. Diagrams
with crossed W lines are not displayed.

Figure 3: Diagrams contributing to 1/M gluon matching, with the same notation as in Fig. 1. Curly lines
denote gluons. Diagrams with both gluons attached to the upper quark line or with one gluon attached
to each of the upper and lower quark lines are not shown.
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�!
D �

 �
D , and curly braces denote symmetrization,

A{µB⌫}
⌘ (AµB⌫ + A⌫Bµ)/2. The ellipsis in Eq. (6) denotes higher dimension operators suppressed by

⇤QCD/mW , and spin-dependent operators.
By restricting to dimension seven operators in Eq. (6), we are neglecting contributions suppressed by

additional powers of ⇤2
low�energy/m2

W
, where ⇤low�energy denotes any scale below mW (e.g., mb, or ⇤QCD).

However, we will account for corrections of order mW /M in the coe�cient functions appearing in Eq. (6)
in our analysis of HWET power corrections. This power counting is appropriate for dark matter masses in
the few hundred GeV to TeV range, a focus for current and next generation direct detection experiments.

We now proceed to match the theory (1) to the theory (6). By integrating out weak scale particles (the
Higgs boson, electroweak gauge bosons, and the top quark), we obtain a solution for the twelve e↵ective

theory coe�cients (c(0)
q and c(2)

q with q = u, d, s, c, b, as well as c(0)
g and c(2)

g ) that specify the interactions
of DM with five flavor QCD. We neglect subleading corrections involving light quark masses, and use
CKM unitarity to simplify sums over quark flavors. Approximating |Vtb| ⇡ 1, these simplifications imply

that c(S)
u = c(S)

d
= c(S)

s = c(S)
c for S = 0, 2, leaving six independent coe�cients. In the following, we denote

generic up- and down-type quarks in five-flavor QCD by U and D, respectively, and an arbitrary quark
flavor by q.

Feynman diagrams contributing to the matching at O(1/M) for the quark and gluon coe�cients are
shown in Figs. 2 and 3, respectively. Diagrams for gluon operators contain an additional loop compared
to diagrams for quark operators. However, owing to the large gluon matrix elements of the nucleons, these
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D

SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0

� M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·

·
⌧
a

4
�i⌧

a

4

·
i⌧

a

4
⌧
a

4

1

CA� c.c. , Y =

0

B@
0 · ·

· 02
�i12
2

·
i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21
p
2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0

� mW , im-
plies that the partner state contributes at leading
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DIRECT DETECTION — PURE STATES HARD TO DETECT

▸ “Pure” neutralino does not 
couple to Higgs at tree 
level, e.g. pure Wino or 
Higgsino or Bino


▸ One-loop: wino may be 
detectable with XLZD/
DARWIN


▸ It’s still important to finish the 
large-scale DD program to the 
neutrino fog (Challenge #2)
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FIG. 3. Expected SI cross-sections for di↵erent complex WIMPs for minimal splitting as defined in Sec. III. The blue
dots correspond to Dirac WIMPs and the red dots to complex scalar WIMPs. The vertical error bands correspond to
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A. Direct Detection prospects

The spin independent scattering cross-section �SI

of DM on nuclei receives two contributions: i) from
purely EW loop diagrams ii) from Higgs mediated
tree-level diagrams generated by bothO0 andO+. For
minimal splitting Higgs mediated scattering is sub-
dominant and �SI can be computed by considering
only EW loop diagrams.

Following [17, 42], the Lagrangian describing the

spin-independent (SI) DM interactions with quarks
and gluons is

L SI

e↵
= fqmq�̄�q̄q+

gq

MDM

�̄i@
µ
�
⌫
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q

µ⌫
+fG�̄�Gµ⌫G
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,

(16)
where O

q

µ⌫
⌘

i

2
q̄
�
Dµ�⌫ +D⌫�µ �

1

2
gµ⌫ /D

�
q is the

quark twist-2 operator. The Wilson coe�cients are
given by [17]
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(17)

where mh is the mass of the Higgs and c =
1.32, b = 1.19, t = 1. Furthermore we have de-
fined a

V

q
= T3q/2 � Qqs

2
w
, aA

q
= �T3q/2 with cw, sw

being the cosine and the sine of the Weinberg angle,
respectively. The terms proportional to Y correspond
to the exchange of Z bosons inside the EW loops.

After the IR matching of these interactions at the
nucleon scale [42], we can express �SI per nucleon (for
MDM � mN ) as

�SI '
4

⇡
m

4

N
|k

EW

N
|
2
, (18)

where mN is the mass of the nucleon and

k
EW

N
=

X

q=u,d,s

f
EW

q
fTq+

3

4
(q(2)+q̄(2))gEW

q
�

8⇡

9↵s

fTGf
EW

G
,

where the nucleon form factors are defined as
fTq = hN |mq q̄q|Ni/mN , fTG = 1 �

P
q=u,d,s

fTq,

and hN(p)|Oq

µ⌫
|N(p)i = (pµp⌫ �

1

4
m

2

N
gµ⌫)(q(2) +

q̄(2))/mN , and q(2), q̄(2) are the second moments of
the parton distribution functions for a quark or an-
tiquark inside the nucleon [17]. The values of these
form factors are taken from the results of direct com-
putation on the lattice, as reported by the FLAG Col-
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tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
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We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0

� M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.
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of Y = 0 and Dirac SU(2)W doublet of Y = 1
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,
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The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
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where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0

� mW , im-
plies that the partner state contributes at leading
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Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,

52

Figure 2: Diagrams contributing to 1/M quark matching, with the same notation as in Fig. 1. Diagrams
with crossed W lines are not displayed.

Figure 3: Diagrams contributing to 1/M gluon matching, with the same notation as in Fig. 1. Curly lines
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to each of the upper and lower quark lines are not shown.
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WHEN LOOKING FOR DM, USE THE SM AS A SPRINGBOARD

(Lyman-alpha forest)(deBroglie wavelength of galaxy)

1 M� ⇠ 1057 GeV

1000 M�10�23 eV 100 GeV

WIMP paradigm

1 meV

▸ Focus on WIMPs. Reason: weak forces have the right scale, for 
abundance, cosmology and detection, and solve SM problem 
(hierarchy problem)


▸ Axions 


▸ Lighter WIMPs — 1-100 MeV DM (Boehm/Fayet ’05) and keV 
sterile neutrinos



▸ Intermediate range where observation via particle 
interactions with SM is still highly motivated though not 
detectable with traditional WIMP experiments


▸ Hidden Sector/Valleys generically have complexity


▸ Qualitatively different observational signatures


▸ Arise generically in top-down constructions (Hidden Valley Strassler- KZ 2006)

BROADENING THE SCOPE

(Lyman-alpha forest)(deBroglie wavelength of galaxy)

1000 M�10�23 eV 100 GeV

WIMP paradigm
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What’s in the hidden 
valley?

The visible 
Universe
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A concrete example
Z’ mediator

SU(N) gauge theory with 1 light quark

Z’

Shower of v-hadrons

Reconstruct entire event 
to Z’ resonance

Each pair reconstructs to low 
mass v-hadron

Slide 2007

Challenge #3: build out the suite of LHC searches for 
dark sectors



HIDDEN SECTOR / VALLEY

▸ Theory landscape broadened; search strategies broadened
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Hidden Sector

“DM Candidates of a Very Low Mass,” Reviews of Nuclear and Particle Physics, 2401.03025



▸ Motivated searches: candidate whose relic abundance is set by same 
interaction that gives rise to detectable signature

BROADENING THE SCOPE — TOO MANY POSSIBILITIES?

(Lyman-alpha forest)(deBroglie wavelength of galaxy)
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DIRECT DETECTION — MAPPING THE THEORY SPACE

▸ Collider, Stellar Cooling, and SIDM bounds all enter into 
terrestrial direct detection space
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Figure 5: (Left) Constraints on mediator mass mφ and coupling to electrons ge for mφ < mX . The shaded region
is excluded from electron anomalous magnetic moment, beam dump experiments, and supernova cooling [65]. The
red dashed line shows the ge value used to derive the corresponding red dashed line (“C”) in the right plot. (Right)
Constraints on electron scattering from Fig. 4. The boundaries A, B, and C are discussed in more detail in the text.

labeled as “Decay before BBN” in Fig. (4).
For reference, we also give the lower bound on the cross section in the case where mφ ! mX . Here

DM annihilation occurs directly to SM final states through φµ, with annihilation cross section 〈σv〉 =
4αXg2nm

2
X/m4

φ. Since the same combination of parameters enters in both the annihilation cross section and
the nucleon scattering cross section, we can directly apply the relic density constraint to obtain

σn ! 5× 10−37 cm2

(

1 GeV

mX

)2
( µn

0.5 GeV

)2
. (36)

This is the “mφ ! mX” line in Fig. (4). However, this scenario is ruled out by the direct detection limits
on the cross section.

B. Electron Scattering

We consider scattering off electrons for DM in the mass range 1 MeV < mX < 1 GeV. The DM-electron
scattering cross section is

σe = 4αXg2e
µ2
e

m4
φ

. (37)

The lower bound on the scattering cross section can be derived in the same way as in the nucleon case,
taking mφ < mX . Here both CMB and relic density constraints apply, since mX < 1 GeV and the energy
deposition efficiency f ≈ 1 for decay to electrons. We take the bound on the annihilation cross section in
Eq. (16) with cf ≈ 1, giving a lower limit on αX :

αX ! 4× 10−7
( mX

10 MeV

)

√

ln

(

40 GeV

mX

)

. (38)
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FIG. 5: Sample processes considered in this section to detect DM, �. Top left: DM-nucleus
scattering. Top middle: DM-electron scattering. Top right: DM-nucleus scattering with emission
of a photon. Bottom left: Absorption by an electron of a bosonic DM particle (a vector A0, scalar
�, or pseudoscalar a). Bottom middle: Absorption by an electron of a bosonic DM particle, made
possible by emission of a phonon �. Bottom right: Emission of multiple phonons in DM scattering
o↵ helium.

2. Ideas to Probe Low-Mass Dark Matter

Over the past decade, several strategies have been proposed that maximize the energy
transfer to the target. In some cases this is at the expense of a modest rate suppression,
but this is at least partially o↵set by the larger DM particle flux expected as m� is lowered.
These interactions include:

• DM-Electron Scattering (1 keV – 1 GeV): For low-mass DM elastic scattering
(Fig. 5, top middle), the DM energy is transferred far more e�ciently to an electron
than to a nucleus [48]. If the DM is heavier than the electron, the maximum energy
transfer is equal to the DM kinetic energy,

Ee 
1

2
m�v2

� . 3 eV
⇣ m�

MeV

⌘
. (10)

Bound electrons with binding energy �EB can thus in principle produce a measurable
signal for

m� & 0.3 MeV ⇥
�EB

1 eV
. (11)

This allows low-mass DM to produce ionized excitations in drift chambers (�EB ⇠

10 eV) for m� & 3 MeV [48, 90, 91], to promote electrons from the valence band to the
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DEFINING TARGETS

▸ Utilize DM Abundance as guide for interaction rates
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�, or pseudoscalar a). Bottom middle: Absorption by an electron of a bosonic DM particle, made
possible by emission of a phonon �. Bottom right: Emission of multiple phonons in DM scattering
o↵ helium.
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Over the past decade, several strategies have been proposed that maximize the energy
transfer to the target. In some cases this is at the expense of a modest rate suppression,
but this is at least partially o↵set by the larger DM particle flux expected as m� is lowered.
These interactions include:

• DM-Electron Scattering (1 keV – 1 GeV): For low-mass DM elastic scattering
(Fig. 5, top middle), the DM energy is transferred far more e�ciently to an electron
than to a nucleus [48]. If the DM is heavier than the electron, the maximum energy
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Ee 
1

2
m�v2

� . 3 eV
⇣ m�

MeV

⌘
. (10)

Bound electrons with binding energy �EB can thus in principle produce a measurable
signal for

m� & 0.3 MeV ⇥
�EB

1 eV
. (11)

This allows low-mass DM to produce ionized excitations in drift chambers (�EB ⇠

10 eV) for m� & 3 MeV [48, 90, 91], to promote electrons from the valence band to the
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Freeze-in Asymmetric Dark Matter

US Cosmic Visions 1707.04591

The landscape of low-threshold dark matter direct detection in the next decade

Figure 4: Figures are adapted and updated from BRN report [94]. Top left: Current 90% c.l. constraints on
DM-electron scattering through a heavy mediator from direct-detection experiments (including bounds on
the solar-reflected DM component) (beige, as in Fig. 1 and from [197], but see also [198, 199]) together
with approximate regions in parameter space that can be explored in the next ⇠5 years (“near-term”, green)
and on longer timescales (“far-term”, blue). Orange regions labelled “Key Milestone” represent concrete
dark-matter benchmark models and are the same as in the BRN report [94]. Along the dotted line DM
would produce about three events in an exposure of 100 gram-year, assuming scattering off electrons in
a hypothetical target material with zero threshold. Top right: As for left plot, but assuming DM-nuclear
scattering; direct-detection bounds are from [50, 51, 56, 200, 201], while the cosmic-ray accelerated DM
bounds are from [42, 59]. Bottom left: As for top-left plot, but assuming scattering through an ultralight
mediator. Direct-detection bounds are as in Fig. 1, while other bounds are collected in [10, 57, 198]. Green
region at large cross section values is allowed for a subdominant DM component [57]. Bottom right: As for
top-left plot, but for the case of dark-photon dark matter absorption (bounds are as in Fig. 1).

Besides the phenomenal improvements in the sensors, significant progress has also
been made in characterizing and understanding potential low-threshold backgrounds. We
will discuss this further in Sec. 4.

9

Challenge #4: cover the abundance-driven light DM models in laboratory 
detection experiments



TERRESTRIAL EXPERIMENTS

▸ Probe dark sector via rare (tunneling) process at low energy
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parameter space in these models corresponds to DM-mediator coupling strengths that are
SM-like.

It is worth noting that the dimensionless variable y is no longer a suitable parameter for
presenting results when m� > mA0 , as the DM annihilation proceeds trough ��̄ ! A0A0,
independent of the kinetic mixing strength. However, accelerators can still probe interesting
parameter space through o↵-shell DM production and through direct mediator searches,
where the mediator decays back to Standard Model Final States. The present status and
prospects for visibly-decaying A0 searches are shown in Fig. 22. These searches are set to
continue testing the top-down motivated values of ✏ in the near future.
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FIG. 18: Current constraints (shaded regions) and sensitivity estimates (dashed lines) on the SM-
mediator coupling ✏ = gSM/e, for various experiments based on the missing mass, missing energy
and missing momentum approaches. The green band show the values required to explain the muon
(g-2)µ anomaly [53]. Right: Corresponding curves on the parameter y, plotted alongside various
thermal relic target. These curves assumes mA0 = 3m� and ↵D = 0.5. For larger mass ratios or
smaller values of ↵D, the experimental curves shift downward, but the thermal relic target remains
invariant. The asymmetric DM and ELDER targets (see text) are also shown as solid orange and
magenta lines, respectively. Courtesy G. Krnjaic.

H. Summary and key points

This chapter has reviewed the science case for an accelerator-based program and outlined
a path forward to reach decisive milestones in the paradigm of thermal light DM. The key
points of the discussion could be summarized as follows:

• The scenario in which DM directly annihilates to the SM defines a series of predictive,
well-motivated and bounded targets. Exploring this possibility is an important
scientific priority.

• A new generation of small-scale collider and fixed-target experiments is needed to
robustly test this scenario. The accelerator-based approach has the attractive
feature of o↵ering considerable model-independence in its sensitivity to the details of
the dark sector, and can uniquely probe all predictive models.
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NEW IDEAS FOR DIRECT DETECTION

▸ (Looking Beyond Classical Billiard Ball Nuclear Recoil)
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COLLECTIVE EXCITATIONS
▸ When deBroglie wavelength is longer 

than inter-particle spacing, collective 
excitations are relevant degrees-of-
freedom


▸ Overarching goal is to find a target 
with a strong Dynamic Structure 
Factor

DM

Phonons
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).

wave which stores a finite amount of energy.
A priori, the dark matter can excite both the optical and acoustic modes, but the energy deposited

in the acoustic modes is much smaller and is only detectable in the most optimistic circumstances.
Concretely, for mX . MeV, the DM momentum mXv . keV is sufficiently small that it is only possible
to excite a phonon mode within the first Brillouin zone. Consider a DM scattering with momentum
transfer q and energy deposition !, which excites a single acoustic phonon; the phonon must absorb
all of the energy and momentum transferred. This leads to the scaling

! = cs |q| . 2 cs v mX ⇠ 7 meV ⇥
mX

100 keV
. (1)

with v ⇠ 10�3 the DM velocity and assuming the speed of sound for sapphire. The threshold for near
future devices will be at best in the 10 � 100 meV range, which means that single acoustic phonon
excitations from light DM will be difficult or impossible to detect, depending on mX . However, the
scaling in (1) does not apply for the optical modes since they have an energy of ! ⇠ 30 meV or more
as |q| ! 0, as is evident from Fig. 2.

The gapped dispersion of optical phonons is a particularly appealing feature, as it allows nearly the
maximum amount of DM kinetic energy to be extracted in the scattering, even when the momentum
transfer is much less than a keV. This is in contrast to recoils off free nuclei, where the energy deposited
from light DM is much less than the initial DM kinetic energy. The presence of optical phonons is also
advantageous compared to a material such as superfluid helium. Superfluid helium does have gapped
quasiparticle excitations (rotons), but they only occur at high q and are much lower energy that
the optical phonons in a solid. Since single phonon production in superfluid helium is undetectable
in the foreseeable future, one must resort to multi-phonon production to break the relation in (1),
as was demonstrated in Refs. [30, 31]. However, the rate is suppressed since this is a higher order

7
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▸ When deBroglie wavelength is longer than inter-article 
spacing, collective excitations are relevant degrees-of-
freedom


▸ Overarching goal is to find a target with a strong Dynamic 
Structure Factor

COLLECTIVE EXCITATIONS Schutz, KZ PRL 1604.08206,    
Knapen, Lin, Pyle, KZ 1712.06598
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FIG. 1. Illustration of kinematic regimes probed via the three detection channels considered in this paper.

For an incoming DM particle with velocity v = 10�3, the momentum transfer q and energy deposition !

are bounded by !  qv � q
2
/2m�, shown by the shaded regions for three DM masses. Nuclear recoils

require ! = q
2
/2mN for a given type of nucleus, shown by the solid lines for helium and several elements in

existing or proposed crystal targets. Standard calculations assuming scattering o↵ individual nuclei break

down below a few meV (a few hundred meV) for superfluid He (crystal targets), where we truncate the lines.

Electron transitions can be triggered for ! above the band gap, which is O(eV) for typical semiconductors, as

shown by the dashed line. The end point at q ⇠ 10 keV corresponds to a few times ↵me, above which valence

electron wavefunctions are suppressed, and only (semi-)core electrons can contribute (which requires ! to

be much higher than the band gap). Single phonon excitations are relevant for ! . O(100meV) in typical

crystals, as shown by the dotted line. The momentum transfer can be up to q ⇠
p
mN!ph ⇠ O(100 keV)

with !ph the phonon energies, above which the rate is suppressed by the Debye-Waller factor. We see

that a GeV-mass DM can be probed by all three channels; a 10MeV DM is out of reach in conventional

nuclear recoil searches, but can be searched for via electron transitions in semiconductors and single phonon

excitations in crystals; a sub-MeV DM cannot even trigger electron transitions in eV-gap materials, but can

still be detected via single phonon excitations.

Trickle, Zhang, KZ, 1910.08092

Directionality for free!

FIG. 7. Mode 30 (left), mode 16 (center) and mode 4 (right), which dominate the scattering for

(dark) photon mediator processes at long wavelengths. Modes 30 and 16 are characterized by a large

oscillation dipole of the Al (gray) and O (red) atoms respectively. Mode 4 exhibits two large dipoles

from the Al atoms, oscillating in anti-phase. Adobe Acrobat is required to view this animation.
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FIG. 8. Modulation of the scattering rate of the dominant optical phonon modes over a sidereal day,

for different DM masses. The percentage in the legend indicates the weight of the mode in the total

rate, after excluding the acoustic modes.
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EFT OF DARK MATTER INTERACTION WITH QUANTUM MATERIALS

▸ Computing rates = lattice potential + eigenproblem

𝜒

DM

| i 〉 → | f 〉

crystal lattice

p

p’

9

• If only one of the constituent particles p, n, e is responsible for the transitions |ii ! |fi,

S(q,!) is DM model independent. Otherwise it depends on ratios (but not the overall

strength) of the couplings f0
p , f

0
n, f

0
e .

• For any given DM mass m� and incoming velocity v, only a slice in the (q,!) space, ! = !q,

is probed in the scattering process. The parabolic boundary of kinematic region for each m�

in Fig. 1 is the envelope of these slices for all v directions for fixed magnitude of v.

Finally, to obtain the total rate per target mass, we average over the DM’s initial velocity,

multiply by the number of DM particles in the detector, and divide by the detector mass, giving

R =
1

⇢T

⇢�

m�

Z
d
3
v f�(v)�(v) , (16)

where ⇢T is the target mass density, ⇢� is the local DM energy density, and f� is the DM’s velocity

distribution in the target rest frame. A common choice for f� is a truncated Maxwell-Boltzmann

(MB) distribution boosted by the Earth’s velocity with respect to the galactic rest frame,

f
MB
� (v) =

1

N0
e
�(v+ve)2/v20 ⇥

�
vesc � |v + ve|

�
, (17)

N0 = ⇡
3/2

v
2
0

"
v0 erf

�
vesc/v0

�
�

2 vesc
p
⇡

exp
�
�v

2
esc/v

2
0

�
#
. (18)

In the calculations presented in this paper, we take ⇢� = 0.4GeV/cm3, v0 = 230 km/s, vesc =

600 km/s, ve = 240 km/s.

In addition to the total rate, it is often useful to know the di↵erential rate with respect to

the energy deposition onto the target !. This simply requires inserting delta functions into the

integrals to pick out the contributions with ! = !q:

d�

d!
=

⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
�
�
! � !q

�
, (19)

dR

d!
=

1

⇢T

⇢�

m�

Z
d
3
v f�(v)

d�

d!
. (20)

To summarize, we have the following algorithm for computing the rate for a given detection

channel.

• First, identify the initial and final states |ii, |fi according to the type of excitation.

• Next, quantize FT (q) in terms of the relevant degrees of freedom such that it acts on the

target Hilbert space to induce the transitions |ii ! |fi.

(q,!)

<latexit sha1_base64="BknM3KHzglXjnwWU5GmmpuTOUnM=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0WoICWRii6LblxWsA9oQplMJ+3QecSZSaGE/okbF4q49U/c+TdO2yy09cCFwzn3cu89UcKoNp737RTW1jc2t4rbpZ3dvf0D9/CopWWqMGliyaTqREgTRgVpGmoY6SSKIB4x0o5GdzO/PSZKUykezSQhIUcDQWOKkbFSz3UrWRDF8Gl6EUhOBui855a9qjcHXCV+TsogR6PnfgV9iVNOhMEMad31vcSEGVKGYkampSDVJEF4hAaka6lAnOgwm18+hWdW6cNYKlvCwLn6eyJDXOsJj2wnR2aol72Z+J/XTU18E2ZUJKkhAi8WxSmDRsJZDLBPFcGGTSxBWFF7K8RDpBA2NqySDcFffnmVtC6rfq169VAr12/zOIrgBJyCCvDBNaiDe9AATYDBGDyDV/DmZM6L8+58LFoLTj5zDP7A+fwBa8aS4g==</latexit>
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contributions from individual ions:1

V(x,v) =
X

lj

Vlj(x � xlj ,v) , (3)

where l = 1, . . . , N labels the primitive cells, j = 1, . . . , n labels the ions within each primitive cell,

and xlj is the position of the ion labeled by l, j. Therefore,

eV(�q,v) =

Z
d3x eiq·x V(x,v) =

X

l,j

eiq·xlj eVlj(�q,v) , (4)

and we obtain

�(v) =
1

V

Z
d3q

(2⇡)3

X

⌫,k

����
X

l,j

h⌫,k| eiq·xlj eVlj(�q,v)|0i

����
2

2⇡ �
�
!⌫,k � !q

�
. (5)

The central quantity for the rate calculation is then the lattice potential eVlj which the DM

senses. This will depend on both the specific DM model and on the lattice degrees of freedom

(e.g. the nucleon/electron number or total electronic spin of the ions) available to scatter from.

We will determine the lattice potential eVlj in two steps previously mentioned in the introduction:

first, in Sec. II A, we review the procedure of matching relativistic DM models onto NR e↵ective

operators; next, in Sec. II B, we further reduce these e↵ective operators to DM couplings to the

lattice degrees of freedom. In the simplest case of SI interactions, there is only one e↵ective

operator, O1 = 1, and eVlj is a linear combination of hNpilj , hNnilj and hNeilj (proton, neutron and

electron numbers of the ions, respectively) [33]. More generally, a DM model can generate a larger

set of e↵ective operators that involve the spins, momentum transfer, and velocities. The resulting

lattice potential eVlj depends on lattice degrees of freedom that include, in addition to the particle

numbers hN ilj ( = p, n, e), also their spins hS ilj , orbital angular momenta hL ilj , as well as

spin-orbit couplings hL ⌦ S ilj (a tensor with components hLi
 S

k
 ilj , see Eq. (24) below). The

last step in computing the scattering rate is to quantize eVlj in terms of phonon/magnon creation

and annihilation operators; we carry out this exercise in Sec. II C. The framework in this section

will provide the basis for concrete calculations of direct detection rates via single phonon and

magnon excitations, and will be applied to a set of benchmark models in Sec. III.

A. From Dark Matter Models to Nonrelativistic E↵ective Operators

In this subsection, we take a top-down approach in deriving the EFT, focusing on how the

e↵ective operators arise from NR matching of well-motivated relativistic models. While one can also

1 For simplicity, we will refer to either atoms or ions on lattice sites as ions.
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out. The final result of this calculation is the lattice potential in terms of the NR EFT operator

coe�cients c( )i , given below in Eq. (27).

Since the calculation proceeds in much the same way for all operators in the same category, to

avoid tedious repetition we pick one operator from each category to explain the procedure: O
( )
1 ,

O
( )
4 , O

( )
8b and O

( )
3b , with  taken to be one of p, n, e. To obtain the DM-ion scattering potentials

eVlj , we need to compute the matrix elements of these operators between the incoming and outgoing

states of the DM-ion system. Since the initial and final DM states are plane waves, the DM part

of the matrix element simply yields a phase factor, so

eVlj(�q,v) �

X

↵


c( )1

⌦
eiq·x↵

↵
lj
+ c( )4 S� ·

⌦
eiq·x↵S ,↵

↵
lj

+ c( )8b S� ·
⌦
eiq·x↵v ,↵

↵
lj
+ c( )3b

iq

m 
·
⌦
eiq·x↵ v ,↵ ⇥ S ,↵

↵
lj

�
, (15)

where ↵ runs over all the  fermions associated with the ion labeled by l, j, and h·i represents

the ionic expectation value (assuming the ionic state is unchanged for the low energy deposi-

tions of interest). Computing these expectation values in full generality is a tedious task that

involves numerical integration over nuclear and electronic wavefunctions. However, the calcula-

tion is dramatically simplified in the long wavelength limit of interest here, where we can expand

eiq·x↵ = 1 + iq · x↵ + . . . and keep just the leading nonvanishing terms. In the following two

paragraphs, we discuss in turn the v -independent operators O
( )
1 , O

( )
4 (first line of Eq. (15)) and

the v -dependent operators O
( )
8b , O

( )
3b (second line of Eq. (15)).

a) v -independent operators: O
( )
1 , O

( )
4 . For these, it is su�cient to set eiq·x↵ ! 1:

c( )1

X

↵

⌦
eiq·x↵

↵
lj

' c( )1

X

↵

h1ilj = c( )1 hN ilj , (16)

c( )4 S� ·

X

↵

⌦
eiq·x↵S ,↵

↵
lj

' c( )4 S� ·

X

↵

hS ,↵ilj = c( )4 S� · hS ilj . (17)

So we obtain, respectively, the expectation values of the number and total spin of  particles for

ion l, j, as one would expect for the lowest order “coupling to charge” (O( )
1 ) and “coupling to spin”

(O( )
4 ) operators. Note that hS ilj should not be confused with the total nuclear or ionic spin,

which may also contain orbital angular momentum components. We will see in the next subsection

that the total ionic spin (from electrons) is relevant for magnon excitations, and we will need to

work out its decomposition into spin and orbital components (see Eq. (32) below); the total nuclear

spin, on the other hand, does not enter the calculation of phonon or magnon excitations.

Trickle, Zhang, KZ, 2009.13534Knapen, Lin, KZ, 1712.06598
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Figure 1. Projected reach from single phonon excitations (dashed) and electron transitions (solid) for DM scattering mediated
by a kinetically mixed light dark photon (the smallest-gap target InSb su↵ers from slow convergence in the electronic transition
calculation at m� < 1MeV, for which we show results of the two most accurate runs with solid and dotted curves, see
Appendix A 1 for details). Nuclear recoils (not shown) can also probe this model, but the conclusion on which targets are
superior is the same as for the light hadrophilic mediator model. A detector threshold of 1meV is used for the phonon
calculations, and all transitions with energy deposition greater than the band gaps are included in electron excitations. The
freeze-in benchmark is taken from Refs. [12, 80], corrected by including plasmon decay for sub-MeV DM [81]. Stellar constraints
are from Ref. [82] and direct detection constraints are from DAMIC [61], DarkSide-50 [83], SENSEI [62], SuperCDMS [68],
XENON10 [14, 21], and XENON100 [83, 84].2

est optical mode,3

m�,min ⇠ 3 keV

✓
!O

10meV

◆
. (24)

Thus materials having low energy optical phonon modes
are desirable to search for light dark matter; CsI, for
example, has particularly low-lying optical phonon exci-
tations, and its sensitivity to the lightest DM masses is
seen in Fig. 1.
We can also see that at higher masses, single optical

phonon production rates vary widely between materials.
This can be understood analytically. Consider first the

3One has to be careful with this estimate, as the lowest optical mode
is generally not the dominant mode, rather it is the mode which
is most “longitudinal,” or maximizes q · ✏. For simple diatomic
materials, there is one precisely longitudinal mode in the low q
limit, but the same is not true for more complex materials such as
Al2O3, as many gapped modes have a longitudinal component. A
general rule of thumb is that the highest energy optical mode is the
most longitudinal.

simplest case of a diatomic polar crystal (e.g. GaAs).
The dominant contribution to the q integral in Eq. (20)
is well within the 1BZ and therefore we can set G = 0,
Wj ' 0, and g(q,!) / q�1. Approximating Z⇤

j
' Z⇤

j
1,

and noting that Z⇤
1
= �Z⇤

2
⌘ Z⇤, we see that the rate

is dominated by the longitudinal optical (LO) mode, for
which one can show ✏LO,k,1 and ✏LO,k,2 are anti-parallel,
and |✏LO,k,j | =

p
µ12/mj in the limit k ! 0, where µ12 is

the reduced mass of the two ions. Further approximating
the phonon dispersion as constant and "1 ' "1 1, the
rate simplifies to

R /
q4
0

mcell

⇢�
m�

�e

"21!LO

Z⇤2

µ2
�e
µ12

log

✓
m�v20
!LO

◆

/
Z⇤2

A1A2"21

✓
meV

!LO

◆
⌘ Q . (25)

We call Q a quality factor, since it is the combination
of material-specific quantities that determines the direct
detection rate. A higher-Q material has a better reach
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FIG. 3. Projected constraints on DM-electron scattering cross sections at the 95% C.L. (three events, no background) assuming
one kg-year exposure for two benchmark models shown in Eq. (1). Left: SI model with a light mediator (Fmed = (q0/q)

2),
screened with the static dielectric shown in Fig 6. The red solid (dashed) curve shows the constraints with (without) the
inclusion of SOC e↵ects. For comparison we also show projected constraints from single phonon excitations in GaAs (orange)
and SiO2 (purple) computed with PhonoDark [56] (assuming an energy threshold of !min = 20meV), electronic excitations in
an aluminum superconductor [57] (brown), and previous estimates for ZrTe5 (teal) [25]. We also show the projected constraints
combining the SOC energy levels with the No SOC wave functions, (“Partial SOC”, red, dashed) to explicitly show the e↵ect
of the spin dependent wave functions. Stellar constraints (gray) are taken from Ref. [58] and the freeze-in benchmark (orange)
is taken from Ref. [59]. Right: SD model with a heavy mediator (Fmed = 1). Curves labelled “low/high E” include transitions
restricted to the low/high E regions discussed in Sec. III.

The results are shown in Fig. 3 and we discuss them in
detail here. Constraints computed in this work are shown
in red, with shaded bands corresponding to the uncer-
tainty in the calculation of the screening factor/dielectric
function from the electron width parameter, discussed
previously in Sec. III A.

When considering the SI model with a light mediator
we include anisotropic screening e↵ects in the fe(q)/f0

e =
(q̂ · "(q,!) · q̂)�1 factor. "(q,!) is the dielectric tensor,
and this screening factor is especially important for the
sub-MeV DMmasses considered here. Since in this model
the scattering rate is dominated by events with small q,
we approximate "(q,!) ⇡ "(0,!), such that we replace
the dielectric with the anisotropic, long wavelength di-
electric function shown in Fig. 6.

For the SI model, we find that the contribution from
transitions in the low E region, discussed earlier in
Sec. III, dominate the scattering rate. Therefore, in the
left panel of Fig. 3, we only show the results derived from
transitions within the low E region. For the massive me-
diator SD model, in the right panel of Fig. 3, we see that
the low E contributions dominate at small DM masses.
However for m� & 100 keV, when the high E contri-
butions at O(100meV) become kinematically available,
the high E contributions are dominant. This is due to
the fact that when scattering via a heavy mediator the

rate is no longer dominated by the smallest momentum
transfers. While we did not explicitly include transitions
between the low and high E regions, we note that these
are only expected to be important for masses where the
reach is comparable between the regions, and will not
a↵ect the conclusions.

We find that, for the SI model with a light mediator,
the inclusion of SOC e↵ects significantly alters the reach
for the whole DM mass range considered since the rate is
dominated by small energy/momentum depositions. For
the SD model with a massive mediator the SOC e↵ects
are most prominent for low DM masses when the scat-
tering is probing the band structure near the band gap,
which is the most a↵ected by SOC e↵ects. We also see
that at the lowest masses the “Partial SOC” curve is
closer to the “SOC” than the “No SOC” lines. This
shows that while the change to the energy levels is the
dominant e↵ect when including SOC, the spin depen-
dence of the wave functions can give O(1) variations.

The left hand side of all the constraint curves are de-
termined by the band gap. The smallest kinematically
allowed DM mass is m� = 6keV for the SOC calculation
with Eg = 23.5meV, and m� = 21 keV for the No SOC
with Eg = 81.6meV. As mentioned in Sec. III A, we
only consider bands up to 4 eV above the valence band
maximum. Kinematically this means that we are only
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FIG. 3. Projected reach on the multipole DM models listed in Table II, assuming dark photon-like

couplings to SM particles: gp = �ge, gn = 0. The left panel shows the hierarchy of sensitivities of single

phonon excitations, in GaAs and in SiO2, to the three multipole DM models, together with the SI interaction

model for comparison. The center and right panels focus on the magnetic dipole and anapole DM models,

respectively, and compare the phonon reach of GaAs and SiO2 (via the N response), and the magnon reach

of YIG (via the S response) and ↵-RuCl3 (via both S and L responses); these models are best probed by

magnons, though the phonon sensitivity with an optimal target like SiO2 may be competitive.

C. Multipole Dark Matter Models

We now turn to the electric dipole, magnetic dipole, and anapole DM models in Table II. For

comparison, we also include the SI interaction model with a vector mediator. Motivated by the

kinetic mixing benchmark, we assume the mediator couples to electric charge, gp = �ge, gn = 0,

and is much lighter than the smallest momentum transfer, mV ⌧ eV. The SI and electric dipole

DM models generate O1 and O11 at leading order, respectively, both of which induce only the N

response, which can be probed by single phonon excitation. The di↵erential rates are

⌃⌫(q)
SI
phonon =

g2�g
2
e

(q · "1 · q)2

���F (p)
N,⌫ � F (e)

N,⌫

���
2
, (61)

⌃⌫(q)
edm
phonon =

g2�g
2
e

(q · "1 · q)2
q2

4m2
�

���F (p)
N,⌫ � F (e)

N,⌫

���
2
. (62)

Eq. (61) is in agreement with previous results in Refs. [33, 34, 54]. The magnetic dipole and the

anapole DM models generate, in addition to N , also S and L responses, and can therefore be

probed by both phonons and magnons. For single phonon excitation, we have

⌃⌫(q)
mdm
phonon =

g2�g
2
e

4m2
�q

2

⇢
q4

(q · "1 · q)2
q2

4m2
�

���F (p)
N,⌫ � F (e)

N,⌫

���
2

+

����
q4

(q · "1 · q)2
(q̂ ⇥ v)

⇣
F (p)
N,⌫ � F (e)

N,⌫

⌘

Trickle, Zhang, KZ, 2009.13534

Mitridate, Trickle, Zhang, KZ, 2202.11716

PhonoDark and PhonoDark-abs fully implement EFT and publicly available
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FIG. 4. Projected 95% C.L. constraints (3 events) on  = �ge/e = gp/e (left panel) and gB�L, Eq. (50),

in GaAs (solid red), Al2O3 (solid blue), and SiO2 (solid green) targets utilizing single phonon excitations

assuming a kg · yr exposure and no backgrounds. Projected constraints on the kinetically mixed dark

photon model have also been shown in Ref. [89]; the purpose of the comparison here is to illustrate the good

agreement between the first principles calculation performed here, and the data-driven approach (dotted

lines) utilizing the ELF [89], also compared in Fig. 1. Dashed lines are projected constraints from targets

utilizing electronic absorption: doped Si (orange) [61], Al superconductors (“Al-SC”, purple) [52, 57], and

the spin-orbit coupled target ZrTe5 (turquoise) [67] Fifth force constraints are from Ref. [162].

coupling to mass e↵ect. If the proton or neutron spins could anti-align on di↵erent sites, to avoid

the coupling to mass selection rule, the reach would improve. However this seems experimentally

unfeasible. While the gaee constraint from Al2O3
⇤ is competitive with the XENONnT bounds [41],

and nearly reaches the DFSZ band, the white dwarf [123] and red giant [126, 127] cooling bounds

are stronger by roughly an order of magnitude on resonance. However, recently there has been

some uncertainty surrounding the stellar cooling bounds on gaee [128], which may re-open the

parameter space. Absorption into magnons via the wind coupling [76] is still the dominant process

in electron spin ordered targets. This is because the magnon response from the wind coupling does

not su↵er the extra q suppression that the phonon response does, as discussed previously. However,

the strict selection rules governing that process [76] severely limits the number of useful modes in

simple targets, especially in the absence of an external magnetic field, and single magnon readout

is still a developing technology.

Mitridate, Trickle, KZ, 2308.06314



▸ Heavier dark matter: setting relic abundance through 
interactions with Standard Model is challenging (NB: 
exceptions), so detection through Standard Model 
interactions is (generally) not motivated by abundance


▸ Gravitational means to detect structure?
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Grand Challenge #5: Observe Smaller Scale DM Substructure
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FIG. 1: CDM power spectrum derived from BBKS [34] with
white noise power spectrum smoothed on scales rs ! 7 ×

10−2 Mpc, given by eqn. 20. The amplitude of the white noise
spectrum corresponds to the power spectrum for a ScaM of
mass M ! 4 × 103M".

D. ScaMs as microlenses

For ScaMs to act as observable strong microlenses,
three conditions must be satisfied:

1. ScaM masses must lie in the mass range reachable
by experiments. For classic microlens searches by
stellar monitoring in the local halo, this range is
currently 10−7M" ! MScaM ! 10M". However,
the accessible range will widen in the future as mi-
crolensing experiments access fainter and more dis-
tant monitored background sources in other galax-
ies.

2. A rough criterion for strong lensing, leading po-
tentially to large-amplitude variations in source
brightness, is that the radius of the ScaM be smaller
than the Einstein ring radius. For microlensing of
objects over cosmological distances, the Einstein
radius is

RE ! 3 × 1016

(

M

1M"

)1/2

cm. (25)

For lensing toward a source in the local galactic
neighborhood (e.g. toward the LMC or M31), the
Einstein Radius is

RE ! 3 × 1014

(

M

1M"

)1/2 (

D

50 kpc

)1/2

cm, (26)

where D is the distance to the lens, and it is as-
sumed that D # Ds, the distance to the source.

Using the spherical model, eqn. 14, and assuming
that the ScaMs are approximately constant density,
we calculate

RScaM = 4 × 1016 1

δ ((δ + 1)Ωφ)1/3

(

MScaM

1M"

)1/3

cm.

(27)

3. Their cosmological abundance must be consistent
with the limits from the current lensing experi-
ments. Since these objects would generally be too
fluffy to create strong lensing in the nearby halos
observed by the current generation of galactic mi-
crolensing experiments, consistency with the limits
of these experiments is generally not problematic.

Although these objects would generally not be dense
enough to be observed by Galactic microlensing exper-
iments, they may be detectable as microlenses for more
distant sources and halos. If they do produce strong
lensing events, they do not obey the classic Paczynski
[35] point-mass light curve, but instead are dominated
by more generic caustic-crossing events. More generally,
in nearby halos they may not even act as strong lenses,
but may have a resolved density structure that appears as
small-amplitude variations in the light curve of a lensed
source.

To improve on the spherical collapse model, eqn. 14,
and in particular to determine properties of these ob-
jects observable by lensing experiments, we simulate the
collapse of ScaMs using an N-body code. The resulting
objects are more realistic than the spherical model and
allow determination of some representative density pro-
files.

III. SIMULATING SCAMS

We simulate the formation of ScaMs in the radiation
dominated era using the N-body code described in [36].

A. Initial conditions

The initial density profile may be determined utilizing
one of two methods: either by solving the classical equa-
tions of motion for a field φ directly, or simply using the
power spectrum of eqn. 17. The equation of motion for
a scalar field is given simply by

φ̈ + 3Hφ̇ −
1

R2(t)
∇2φ +

∂V (φ)

∂φ
= 0, (28)

where the Laplacian is taken with respect to comoving
coordinates x. We can rewrite this (see [18] for details) in
terms of conformal time, η ≡ R/R1, where R1 is defined
by H(R1) = mφ, and comoving Laplacian ∇̄2, taken with
respect to coordinates x̄ = H(R1)R1x,

φ′′ +
2

η
φ′ − ∇̄2φ +

η2

m2
φ

∂V (φ)

∂φ
= 0. (29)

We assume the system is subject to white noise initial
conditions,

φi = A
∑ sin(ωη)

ωη
sin(pix + ξ1ijk) sin(pjy + ξ2ijk)

× sin(pkz + ξ3ijk), (30)
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FIG. 7: Left: sHMF (top panel), and mass fraction per logaritmich interval (center panel) before

(solid) and after (dashed) the inclusion of tidal e↵ects. The lower panel shows the typical subhalo

concentration parameter as a function of their mass. Right: Discovery significance for di↵erent

values of the observation time and number of pulsars in the array. The residual timing noise and

observation cadence have being fixed to trms = 10ns and �t = 1week. The dashed (solid) line shows

the 1� (5�) significance contour.

the same time. These two scales are respectively fixed by the mass of the radial mode, mr ⇡ fa,

and 1/H ⇡ MP l/T
2. At the QCD phase transition the scale separation is log(MP lfa/⇤2

QCD
) ⇡ 70,

which makes numerical progress to evolve from the PQ to QCD phase transition nearly impossible.

Luckily strings are expected to enter a scaling regime, during which their length per Hubble patch

remains constant, soon after the PQ phase transition. Therefore simulations can be stopped for

reasonable values of log(mr/H) and extrapolated to the QCD era. However, the authors of [45] recently

pointed out that large logarithmic corrections to this scaling regime are present, the extrapolation of

which suggests that axions from strings may dominate the axion relic density contrary to what is

assumed in [43, 44]. This would not only change the predicted axion mass but also the spectrum of

its primordial perturbations. In the following we will set constraints assuming that the axion relic

density is dominated by the misalignment contribution, with the possibility of updating the results in

case the conclusion of reference [45] is confirmed.

Given this assumption we use the primordial spectrum for the axion field derived in [43]. Since

isocurvature perturbations are expected to experience a very small logarithmic growth during radiation

Huge pay-off for theories of DM which leave particle imprints on small scales

Axion miniclusters

CDMParticle Imprints of DM
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▸ Astrometric Lensing, PTAs, FRBs …. other ideas?
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FIG. 5: Limits on the dimensionless primordial power of curvature fluctuations. PTA limits (red) are

compared to constraints from a combination of CMB [38] and Ly-↵ [39] observables, together with

limits on primordial black holes (PBH) (all in blue). The thick dashed line is the Planck best fit,

assuming a constant spectral index, while the thin dashed line is the best fit obtained allowing the

spectral index to have a k dependence.

where, as before, R and M are related by R(M) = (3M/4⇡⇢m)1/3. This implies that there is an

approximate one-to-one correspondence between the power of perturbations on scales 1/R(M) and

the collapse probability, f(M, z), given by (21). Assuming that the population of subhalos is not

drastically altered by their merger history, the fraction of the local DM energy density in subhalos of

a given mass is f(M, z)fb(M), where fb(M) is the bound fraction, Eq. (33), which accounts for tidal

e↵ects that these subhalos experience once accreted into the MW halo. In general these subhalos will

not be isolated objects but will form substructure of larger subhalos, meaning f(M, z = 0) is certainly

an overestimate of the mass fraction of subhalos of mass M . Bearing in mind these assumptions, we

can say that PTA searches will be sensitive to a given amount of primordial power on scales 1/R(M)

when

f(M, z = 0)fb(M) > fmono(M, c) , (35)

where the constraints for a monochromatic population of subhalos, fmono(M, c), are shown in Fig. 2.

Assuming the transfer function is the one predicted by ⇤CDM, and r� = 8.2 kpc, the constraints on

the dimensionless primordial power are shown in Fig. 5. It is clear from this figure that PTA searches
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Figure 3. Sensitivity projections and constraints on the primordial curvature power spectrum PR
as a function of comoving wavenumber k (in units of Mpc�1). Forecasts for where on-going and
future astrometric surveys can reach unit signal to noise ratio are shown by solid and dashed lines
respectively, using velocity templates Tµ (blue), velocity correlations Cµ (green), and acceleration
correlations C↵ (red), for the same parameters as in figure 7. Gray regions are excluded at 95% CL
by temperature anisotropies in the cosmic microwave background (CMB TT ), Lyman-↵ observations,
nondetection of spectral distortions of y� and µ-type in the CMB, and limits on primordial black holes
(PBH). The black dashed line is the best fit to the Planck CMB data assuming a constant spectral
tilt ns, while the yellow band indicates the parameter space where dns/d ln k and d2ns/(d ln k)2 were
allowed to float by 1� from their best fit values (dot-dashed yellow). We refer to sections 3.2 and 6.1
for more details.

10�9 level at scales smaller than those probed in Lyman-↵ observations and CMB experi-
ments. Short of this, there are a variety of motivated objects and scenarios that could be
discovered in the shorter term. Examples include:

• higher-density subhalos from an enhanced primordial power spectrum (subsection 3.2);

• exotic, point-like objects such as primordial black holes and dark stars, or more ex-
tended exotic structures that can form from rich DM microphysics, such as dissipation
mechanisms and phase transitions (subsection 3.3);

• new planets in our own Solar System (subsection 3.4).

We start by reviewing the standard spectrum of dark matter subhalos in subsection 3.1, along
with a basic model of the Milky Way’s own dark matter halo and baryonic disk.

3.1 Standard subhalos

The “holy grail” of this approach would be to measure dark matter substructure in the Milky
Way. If the primordial power spectrum is not enhanced at small scales (e.g. if it is given by
the black dashed line in figure 3), then this substructure is expected to consist of a broad,

– 9 –
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FIG. 4. The sensitivity of measuring the time variation of the arrival time difference of repeating FRBs with the 2-Dish
configuration or in the 2-Image scenario. In the 2-Image scenario, the repeating FRB source is strongly lensed with multiple
images. The nonlinear matter power spectrum in the standard ⇤CDM cosmology is plotted as the black dashed curve. The
2-Dish sensitivity is calculated assuming a dish separation of 20AU. Matter power spectrum above the orange curve can be
probed with the 2-Image scenario, while the matter power spectrum above the red curve can be probed with the 2-Dish
configuration using the second-order time derivative (2-Dish-Quadratic) of the arrival time difference. Note that the cubic term
in the 2-Image system is equivalent to the quadratic term in the 2-Dish case. The magenta and green dashed curves are the
matter power spectrum arising from axion miniclusters (AMC) and the magenta dashed curve is that expected from the QCD
axion. The green dashed curve has a larger axion minicluster mass than the QCD axion minicluster, which is more detectable.
We found that the QCD axion miniclusters will be detectable by the 2-Dish configuration with a 20AU baseline.

B. Early Matter Domination

The standard ⇤CDM model of cosmology has been a great success in explaining current observations, ranging from
Big Bang Nucleosynthesis (BBN) at early times to large scale structure formation at late times. Inflation solves the
horizon and flatness problems of the hot Big Bang cosmology and generates curvature perturbations as the seeds for
large-scale structure formation. However, a remaining obscure component of the physical cosmology model is the
reheating process with the thermal history before BBN, which evades all current observations. The most stringent
bound on the maximal temperature of radiation domination comes from the thermal production of neutrinos. If the
Universe is radiation-dominated at a temperature of ⇠ 3MeV or higher, thermal neutrino production is sufficient to
produce the correct abundances of light elements [99–102]. There are no observational constraints on the thermal
history at temperatures above 3MeV.

On the other hand, nonstandard thermal history such as an early epoch of matter domination or a first-order phase
transition is required to explain the asymmetry between baryon and anti-baryon, which is an outstanding puzzle in
cosmology. It is also possible to generate the baryon asymmetry at a temperature of MeV scale with meson decays
in an epoch of early matter domination [103–107]. Since the energy density of matter scales as a

�3 while that of
radiation scales as a

�4, matter will always dominate the energy density budget as long as it is stable. In the early
Universe, if there are long-lived scalar fields such as stabilized moduli in string theories [108–110], those scalar fields
can dominate the energy density before they decay. It can be perfectly consistent with current constraints from the
light elements abundances produced during BBN as long as those scalar fields reheat the Universe to a temperature
above 3MeV.

Such nonstandard thermal history will have unique effects on structure growth. During matter domination, sub-



DETECTING DARK MATTER SUBSTRUCTURE IS AN EXTREMELY IMPORTANT PROBLEM

▸ Pulsars, observed over decades, are accurate clocks


▸ These projections were done in absence of SMBHB.  Are 
there promising ideas to beat this background?

Pulsar
Earth

2

timing e↵ects in measurements of pulsar periods. Pul-
sars with millisecond periods, observed over time scales
of decades, are known to be remarkably stable clocks.
While their periods fluctuate over short times, these fluc-
tuations do not substantially accumulate. In practice one
can define a pulse phase of the signal,

�(t) = �0 + ⌫ t+
1

2
⌫̇ t2 +

1

6
⌫̈ t3 + ... (1)

where ⌫ is the frequency and ⌫̇, ⌫̈ are its first and second
derivatives. The most stable pulsars have frequencies of
O(kHz) and a spin-down rate of the pulsar, ⌫̇/⌫, ranging
from roughly 10�23

� 10�20 Hz, both of which can be
fit from the data. Empirically, it is found that ⌫̈/⌫ can
be below 10�31 Hz2 [43] and is typically not included in
fits to the data, allowing one to place upper bounds on
processes that would produce a non-negligible ⌫̈. Fur-
thermore, any process which induces a modification of
the phase,

�� ⌘

Z
dt �⌫(t) (2)

can be constrained using pulsar timing measurements.
The quality of pulsar timing data is determined by

three parameters. The first parameter is the root-mean-
square (RMS) timing residual, tRMS. This is determined
after finding the frequency, ⌫fit, and its derivative, ⌫̇fit,
which minimizes the residual between the timing data,
tdatan , and the timing model, tn, where tn is found via the
relation 2⇡n = �(tn) from Eq. (1). This gives

tRMS ⌘

s
1

N

X

n

(tdatan � tfitn )2, (3)

where N is the number of data points, and tfitn is tn with
⌫ = ⌫fit, ⌫̇ = ⌫̇fit and all higher order terms dropped. The
minimized residual is typically tRMS ⇠ µsec. The other
two parameters are the observation time of the pulsar,
T ⇠ 10 years, and the time between measurements, �t ⇠
2 weeks (also known as the cadence). Clearly the pulsars
with the most power to constrain substructure are those
with smaller RMS noise, longer observation times, and
shorter cadence.

Pulsar timing data can probe DM compact objects
since a transit near the timing system will give rise to
a change in the observed frequency of the pulsar. We
consider changes in the observed frequency of the pulsar
due to two e↵ects. First, there can be a gravitational
time delay due to a changing gravitational potential af-
fecting the photon geodesic as it moves along the line of
sight – this is known as a Shapiro time delay, and was
proposed as a probe of dark matter in [44]. Second, the
presence of compact objects can lead to an acceleration
of the Earth or pulsar, also changing the observed pulsar
period – this is the Doppler e↵ect, and was proposed as a
signal of dark matter in [45]. These accelerations are op-
timal for studying smaller masses and are typically more

sensitive than Shapiro delays, though in some parameter
space, as we will explore in detail, Shapiro delays can be
more sensitive due to the long baseline.

The signal from a transiting compact object will look
di↵erent depending on the relevant timescale, ⌧ , associ-
ated with the motion of the compact objects (here we use
this variable schematically but give it an explicit, mass-
dependent meaning in later sections). If we denote the
observation time of a pulsar as T , then dynamic signals
correspond to ⌧ ⌧ T , and will appear as blips in the pul-
sar timing data (analogous to glitches which have been
observed in millisecond pulsar data [46, 47]). Static sig-
nals, with ⌧ � T , will not be observable as blips but
instead as a non-negligible contribution to the second
derivative of the frequency, ⌫̈.

The idea of using pulsar timing to probe dark matter
substructure has a long history. The static contribution
of the Shapiro time delay was suggested as a probe of
PBHs in [48, 49], while searches for dynamic signals were
considered for single events in [44, 45, 50], and multiple
events in [51]. None of these analyses, however, consid-
ered how the signals were related to each other in the
relevant regime of validity. Our results extend, and dif-
fer from, previous results as follows. First, we carry out
the first analysis to correctly consider all forms of tim-
ing signatures, in the dynamic and static limit, and for
both Doppler and Shapiro e↵ects. We comment on the
interplay between these four signals and their comple-
mentary sensitivity in di↵erent mass ranges. The com-
parative analysis has important implications for signals;
for example, in contrast to previous work, we find that
the Doppler signal dominates in the static limit, sub-
stantially modifying the derived constraint. Second, we
perform the first study of the single event ‘blip’ signal
shapes and compute these shapes in three dimensions;
this extends and improves on the previous limits derived
in [45, 50, 52]. Third, we perform projections for cur-
rent and future pulsar timing experiments in all of the
signal regimes, correctly incorporating the impact of the
measurement cadence on the constraint for the first time.
Lastly, we study the impact of the size of compact ob-
jects, parameterized in terms of the profile, on the con-
straints derived. Note that we do not consider a multi-
event (or statistical) signal, as studied in [51]. While
we expect that such an analysis will extend the reach at
the low mass end (below O(10�9 M�) for Doppler signals
and below O(10�4 M�) for Shapiro signals), due to the
more complicated nature of the signal, we reserve study
for future work [53].

The outline of this paper is as follows. In Sec. II we
describe static and dynamic signatures of transiting com-
pact objects, for both Doppler and Shapiro e↵ects, being
careful to delineate the dividing line between the regimes.
Next, in Sec. III, we detail the size of the signals expected
in the dynamic and static regimes for both Doppler and
Shapiro signals. Then we present the analytic and nu-
merical results in Sec. IV, projecting constraints on the
fraction of DM in PBHs (or PBH-like subhalos) which
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FIG. 6: The most stringent 90th percentile upper limits on the PBH dark matter abundance

fdm ⌘ ⌦/⌦dm for di↵erent PBH masses, M . The results in the present work are labelled as

‘Bayesian’ while the sensitivity projections in Refs. [33, 34] are labelled as ‘Frequentist’.

C. E↵ects of Red Noise

Realistic PTA data contain red noise. Some pulsars contain intrinsic red noise, while a stochastic

GWB can also induce a red noise process correlated among all pulsars. For instance, a common red

noise process with median amplitude A = 1.92 ⇥ 10�15 and spectral index � = 13/3 is reported by

NANOGrav in Ref. [38]. For completeness, we briefly consider the e↵ect of red noise, such as the

SMBHB background, on a PTA’s ability to detect dark matter.

Instead of the upper limits on fdm, we report the e↵ects of red noise on the posterior distribution of

the dark matter amplitudes Astat and Adyn in Fig. 7. The presence of the red noise shifts the posterior

distribution towards large amplitudes, implying that the constraints on the amplitudes (hence fdm)

worsen. To quantify the e↵ects, we show the 90th percentile of Astat and Adyn. As shown in Fig. 7,

a red noise process with Ared = 10�15 would increase the upper limits on Astat and Adyn by 2 and

1.5 orders of magnitude respectively. The PBH dark matter abundance fdm scales as AD, stat, A2

D, dyn

and A
2/3
S, stat respectively, meaning that, in any case, the upper limits on fdm worsen by over an order

of magnitude when red noise is present in the data.5

5
In practice, instead of only considering the upper limits on A, one would have to perform the overlapping integrals

using Eqs. (22)-(23) to compute the posterior distribution of fdm. Hence this analysis is an order of magnitude estimate

of the e↵ects of Ared on fdm. We did not perform a full analysis on mock data with red noise since that would require

us to run the MC simulations with unrealistically high fdm, which is computationally challenging.

Lee, Taylor, Trickle, KZ 2104.05717
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can be probed using pulsar timing. These results are ex-
tended to more di↵use subhalos in Sec. V, where we show
that PTAs have sensitivity to much more extended ob-
jects than lensing searches. Finally, in Sec. VI, we sum-
marize our results and suggest ways in which the analysis
can be extended.

II. PULSAR TIMING SIGNATURES FROM
DOPPLER AND SHAPIRO EFFECTS

Transiting compact objects give rise to two di↵erent
e↵ects in the time of arrival of pulses from pulsars. The
first, the Doppler e↵ect, arises from an acceleration of
the Earth or the pulsar. The Shapiro e↵ect, on the
other hand, is a gravitational redshift e↵ect along the
photon geodesic. Both of these e↵ects cause the photon
arrival time to be shifted from the unperturbed propaga-
tion value. The constant terms inside of these time shifts
are unobservable as they can be absorbed by a redefi-
nition of the unperturbed travel time. We thus consider
time-dependent changes which generate a shift in the pul-
sar frequency, �⌫. For the Doppler and Shapiro signals,
we have, 1

✓
�⌫

⌫

◆

D

= d̂ ·

Z
r� dt, (4)

✓
�⌫

⌫

◆

S

= �2

Z
v ·r� dz, (5)

where � is the gravitational potential due to the compact
object and v is its velocity, while d̂ is the direction from
the Earth to the pulsar and z parameterizes the path the
light takes from the pulsar to the Earth. These expres-
sions can be simplified by assuming the compact object
is a PBH of mass M ,

✓
�⌫

⌫

◆

D

= GM d̂ ·

Z
r

r3
dt, (6)

✓
�⌫

⌫

◆

S

= �4GM
ṙ⇥
r⇥

, (7)

where r is the position of the compact object relative
to the pulsar and ⇥ subscript denotes crossing with d̂,
r⇥ ⌘ r ⇥ d̂. Physically, the Doppler delay derives from
integrating over the gravitational field from the com-
pact object and taking the component of the pulsar
(Earth) acceleration towards the Earth (pulsar), while
the Shapiro delay depends only on components of the po-
sition and velocity of the compact object in the direction
perpendicular to d̂, as only this gives a time dependent
shift to the metric a↵ecting the photons.

1 Here we assume a weak field approximation, � ⌧ 1, a slowly
varying potential during the interaction time scale (�(r + vr) '
�(r)), where r is the distance of closest approach, and large orbit
eccentricity.
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FIG. 1: Normalized signal shapes observable in pulsar
timing data. In general the Doppler signal is a linear
combination of the two shapes depending on the

object’s trajectory, while the Shapiro signal shape is
fixed.

As shown in Appendix A these expressions can be fur-
ther simplified to

✓
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⌫

◆

D
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GM
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1p
1 + x2

D
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xDb̂� v̂

⌘
· d̂, (8)
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◆
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4GM

⌧S

xS

1 + x2

S

, (9)

where we have taken the motion of the transiting object
as r = r0 + vt. We define xD ⌘ (t� tD,0)/⌧D, xS ⌘ (t�
tS,0)/⌧S as normalized time variables. Here, the width
of each signal is given by ⌧D ⌘ |r0 ⇥ v| /v2 and ⌧S ⌘

|v⇥ ⇥ r⇥| /v2⇥. The times for the passing object to reach
its point of closest approach are given by tD,0 ⌘ �r0 ·

v/v2, tS,0 ⌘ � (v⇥ · r⇥) /v2⇥. For the Doppler delay, the
vector pointing from the pulsar to the point of closest
approach is given by bD ⌘ r0 + vtD,0. For the Shapiro
delay the relevant vector points from the line of sight
to the point of closest approach, and is given by bS =
d̂ ⇥ (r⇥ + v⇥tS,0). From here on we will drop the D,S
subscripts which will be apparent by context.

The signal shapes are shown in Fig. 1. The Doppler
signal has two components depending on the orientation
of the incoming object, a transient signal (/ v̂ · d̂) and
a non-transient signal (/ b̂ · d̂). The Shapiro signal is
always transient regardless of orientation.

Note that one may be tempted to conclude immedi-
ately that a Shapiro signal is always subdominant to the
Doppler signal, as it is suppressed by v2. However, the
Shapiro signal is amplified by the long baseline (⇠ kpc)
resulting in a much shorter typical timescale, and is able
to probe a complementary mass window. We consider
this in detail in the next sections.



UNDERSTANDING DM SUBSTRUCTURE WILL BE IMPORTANT

▸ What are realistic 
constraints on DM (elastic) 
self-interactions?


▸ If DM interactions are 
dissipative, can easily sink to 
the center of a halo, 
eventually forming Super 
Massive Black Holes


▸ It’s not currently known 
how SMBHs form


▸ Could Dark Matter play a 
role?
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the cut-o↵ power-law function defined in Eq. (3.8) as the ERDF, which essentially includes
a power-law tail of SMBHs with low Eddington ratios. The quasar luminosity functions
predicted from this ERDF are shown in the lower panel of Fig. 5. We have set D = 1
(since we have already considered quasars with low activity with this ERDF) and tuned ↵
in order to best match the observational constraints. The model with �/m = 0.1 cm2 g�1

and ↵ = �1.1 is in perfect agreement with observations at all luminosities. The model with
�/m = 0.05 cm2 g�1 with ↵ = �0.6 can produce the correct abundance of bright quasars
but predicts a shallower faint-end slope. We note that this discrepancy cannot be alleviated
by tuning ↵ and D, since further decreasing ↵ will decrease the normalization at the bright
end and require an unphysical value D > 1 to match observations. The comparisons here
demonstrate that with a little tuning of parameters of the ERDF, the model can reproduce
the observed quasar luminosity function. Meanwhile, despite the detailed functional form we
use for the ERDF, our results suggest that if the collapse of dissipative dark matter halo is
the dominant seeding mechanism for SMBHs at high redshift, a significant fraction of non-
active SMBHs or SMBHs with low Eddington ratios would be expected. Such a feature can
be tested with future surveys of high redshift quasars with improved completeness.

Figure 5. Bolometric quasar luminosity function at z = 6. Top: Model predictions, varying
�/m and �M0. The predictions are derived by convolving the SMBH mass function with a log-
normal ERDF, tuning the duty-cycle to match the abundance of luminous quasars. The solid circles
represent observational constraints compiled in [122]. The prediction assuming �/m = 0.05 cm2 g�1 is
compatible with the observations and produces the observed abundance of luminous quasars at z = 6,
assuming a relatively low duty-cycle. On the other hand, the model with �/m = 0.05 cm2 g�1 will
overproduce quasars of Lbol ⇠ 1047 erg/s. Bottom: We show the predictions with a cut-o↵ power-law
as the ERDF. The duty-cycle is assumed to be unity. The faint-end slope of the ERDF (↵) is tuned
to make the predicted quasar luminosity function close to observations. Both models can agree well
with the luminous quasar abundances in observations. But the model �/m = 0.05 cm2 g�1 does not
fit perfectly with the faint end luminosity function regardless of the ↵ adopted.

Since the most important implication of the model is the existence of extremely massive
SMBHs, we explicitly track the mass growth history of ⇠ 300 randomly selected massive
SMBHs with logMBH  10 at z = 7 in the merger trees. The results of the model with �/m =
0.1 cm2 g�1 are shown in Fig. 6 and compared to the mass measurements of high redshift
quasars in the Ref. [48] compilation, including observations from Refs. [28, 29, 94, 96, 98–
100]. The masses were measured using the virial method based on the broad line emission
from quasars. The recent measurement of a z ⇠ 7 quasar [134] is added to this compilation.
For these quasars, we show their mass growth history assuming they have the same Eddington
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our main conclusions.
II. SIDM halo model. Scattering between DM particles

is more prevalent in the halo center where the DM density is
largest. It is useful to divide the halo into two regions, sepa-
rated by a characteristic radius r1 where the average scatter-
ing rate per particle times the halo age (tage) is equal to unity.
Thus,

rate⇥ time ⇡
h�vi

m
⇢(r1) tage ⇡ 1 , (1)

where � is the scattering cross section, m is the DM parti-
cle mass, v is the relative velocity between DM particles and
h...i denotes ensemble averaging. Since we do not assume
� to be constant in velocity, we find it more convenient to
quote h�vi/m rather than �/m. We set tage = 5 and 10 Gyr
for clusters and galaxies, respectively. Although Eq. (1) is a
dramatic simplification for time integration over the assembly
history of a halo, we show by comparing to numerical simu-
lations that it works remarkably well.

For halo radius r > r1, where scattering has occurred
less than once per particle on average, we expect the DM
density to be close to a Navarro-Frenk-White (NFW) profile
⇢(r) = ⇢s(r/rs)�1(1+r/rs)�2 characteristic of collisionless
CDM [26]. In the halo center, for radius r < r1, scattering
has occurred more than once per particle. Here, we expect
DM particles to behave like an isothermal gas satisfying the
ideal gas law p = ⇢�2

0 , where p, ⇢ are the DM pressure and
mass density and �0 is the one-dimensional velocity disper-
sion. Since the inner halo achieves kinetic equilibrium due
to DM self-interactions, the density profile can be determined
by requiring hydrostatic equilibrium, rp = �⇢r�tot. Here,
�tot is the total gravitational potential from DM and bary-
onic matter, which satisfies Poisson’s equation r2�tot =
4⇡G(⇢ + ⇢b), where G is Newton’s constant and ⇢b is the
baryonic mass density. These equations yield

�2
0 r2 ln ⇢ = �4⇡G(⇢+ ⇢b) , (2)

which we solve to obtain ⇢(r) assuming spherical symmetry.
We model the full SIDM profile by joining the isothermal

and collisionless NFW profiles together at r = r1:

⇢(r) =

⇢
⇢iso(r) , r < r1
⇢NFW(r) , r > r1

(3)

where ⇢iso is the solution to Eq. (2). We fix the NFW param-
eters (⇢s, rs) by requiring that the DM density and enclosed
mass for the isothermal and NFW profiles match at r1. Thus,
our SIDM halo profile is specified by three parameters: the
central DM density ⇢0 ⌘ ⇢(0), velocity dispersion �0, and
r1. Lastly, we note that this model exhibits a two-fold degen-
eracy in solutions for h�vi/m. We keep the smaller h�vi/m
solutions but note that this situation may be indicative of the
degeneracy between halo profiles with cores that are growing
or shrinking in time [5].

III. SIDM fits. To constrain DM self-interactions, we con-
sider a set of six relaxed clusters and twelve galaxies with
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FIG. 1: Self-interaction cross section measured from astrophysical
data, given as the velocity-weighted cross section per unit mass as
a function of mean collision velocity. Data includes dwarfs (red),
LSBs (blue) and clusters (green), as well as halos from SIDM
N-body simulations with �/m = 1 cm2/g (gray). Diagonal
lines are contours of constant �/m and the dashed curve is the
velocity-dependent cross section from our best-fit dark photon model
(Sec. V).

halo masses spanning 109 � 1015 M�. These objects ex-
hibit central density profiles that are systematically shallower
than ⇢ / r�1 predicted from CDM simulations. To determine
the DM profile for each system, we perform a Markov Chain
Monte Carlo (MCMC) scan over the parameters (⇢0,�0, r1)
characterizing the SIDM halo, as well as the mass-to-light ra-
tio ⌥⇤ for the stellar density. The value for ⇢(r1) determines
the velocity-weighted cross section h�vi/m from Eq. (1), as a
function of average collision velocity hvi = (4/

p
⇡)�0 for

a Maxwellian distribution. We also verify our model and
MCMC fit procedure using a mock data set from simulations.

Clusters. We consider the relaxed clusters from the data
set of Newman, et al. [19, 27] for which spherical modeling
is appropriate (MS2137, A611, A963, A2537, A2667, and
A2390). These clusters have stellar kinematics as well as
strong and weak lensing measurements allowing the mass pro-
file to be measured from stellar-dominated inner region (⇠ 10
kpc) out to the virial radius (⇠ 3 Mpc). The baryonic and
DM densities are disentangled by constraining ⌥⇤ through
the assumption that all the clusters share a similar star for-
mation history. The inferred DM density profile is consistent
with CDM expectations except in the inner O(10) kpc region
where a mass deficit is inferred [19]. These small core sizes
dictate the preference for a velocity-dependent cross section.

We model each cluster using Eq. (3) and fit directly to the
stellar line-of-sight velocity dispersion data [27]. We include
the gravitational effect of the stars following Eq. (2) and allow
for a ±0.1 dex spread in ⇢b to account for systematic uncer-
tainties [19, 27]. Further, as a proxy for fitting to the gravi-
tational lensing data at large radii, we fit to posteriors of the
maximum circular velocity Vmax and the corresponding radius
rmax that have been obtained from the lensing data [27].
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DISCUSSION

▸ A wide net has been cast.


▸ The theory frameworks and ideas have been proposed, 
e.g. QCD axion, hidden sector/valley 


▸ The theoretical ideas for experiments to search for these 
theories are available, e.g. collective excitations


▸ There is a well-defined and exciting experimental program 
that, in some cases (e.g. axions), is limited by funding
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FIG. 1. Summary of current and future laboratory direct-detection experiments to set constraints on scalar
and vector dark matter. These are complementary to cosmological and astrophysical probes, both in mass
and the coupling strength to the SM, see Fig. 2. “Qubits” includes Rydberg atoms, trapped ions, and super-
conducting transmon qubits. “Torsion Balances” refers specifically to direct DM searches, as opposed to more
traditional equivalence principle (EP) violation tests. “GW” refers to gravitational wave detectors.

Frontier (CF2) white paper [15] discusses searches for axions and ALPs (i.e., pseudo-scalars), while
this white paper focuses on searches for scalar and vector dark matter candidates. Two other
Snowmass white papers in the Instrumentation Frontier (IF1) focus on quantum sensors [16, 17]
that are used for the purpose of UDM detection discussed in this work.

We have only begun the exploration of quantum technologies in this field, and improvements of
many orders of magnitude in the sensitivity to UDM are expected over the next decade. Just in the
few years since the previous Snowmass process, a wide range of new experiments have emerged.
Nearly the entire effort described in this paper is less than 10 years old and still in its infancy, with
rapid improvements of many orders of magnitude expected over the next few years. We show the
diversity of new experiments and their coverage of UDM mass ranges in Fig. 1. Cosmological and
astrophysical probes illustrated by Fig. 2 can be complementary to laboratory searches, both in

7

Fig. 13: Projected sensitivities to the dark photon visible mode (BC1) of worldwide experiments ongoing or in
discussion. The filled area corresponds to already excluded regions. (See [2] for details and references.)

Fig. 14: Projected sensitivities to the dark photon visible mode (BC1). The filled area corresponds to already
excluded regions. (See [2] for details and references.)

One physics goal of NA64++(µ) is not covered by the benchmark models, but is of particular
interest: it is the possibility to explain the long-standing deviation of the (g ≠ 2)µ from its Standard
Model value with a very weakly coupled vector boson dominantly coupled to muons. The Phase I short
run of NA64++(µ) with a muon beam provides a unique opportunity to test this.

A longer run of NA64++(µ) would provide sensitivity to millicharged particles (BC3) through
missing energy. This is compared to the reach of other experiments in figure 16. The motivation of an
extended Phase II run of NA64++(µ) will depend on the results of milliQan.

Figures 17 and 18 complement the landscape with hidden scalars and heavy neutral leptons. The
benchmark cases BC4 with scalar-Higgs mixing, and BC8 of an HNL interacting with · -neutrinos, are
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DISCUSSION

▸ There is a range of important astrophysical observations 
to make


▸ What is the nature of the GCE? 


▸ Can we separate baryonic effects from DM sufficiently 
to make definitive statements on SIDM?


▸ Observe DM substructure below Dwarf Mass Scales


▸ Map the cosmic history of the Universe


▸ Where should the important contributions from high 
energy theory going forward come from?


▸ Support for experimental program … (and?)

Challenge #6



OUTLOOK

▸ A wide net has been cast, and the experimental landscape 
is sure to look radically different in 10 years 

FIG. 6: Constraints and projections for the DM-electron scattering cross section �̄e. The left (right)

plots assume a momentum-independent (dependent) interaction, FDM = 1 (FDM = (↵me/q)2). Existing

constraints from XENON10 (XENON100) [90, 91] are shown in the blue (red) shaded regions. Projections

show 3 events for a 1-year exposure [50, 90, 94, 95, 98, 99]; the label includes the threshold (in terms of number

of electrons, photons, or the electron recoil energy) and target mass. Solid/dashed/dotted lines indicate

an estimate of the time to start taking data, corresponding roughly to a short/medium/long timescale,

respectively. A solid line indicates a mature technology: data taking can begin in . 2 years and a zero

background (radioactivity or dark currents) is reasonable for the indicated thresholds. A dashed line indicates

more R&D is required and, if successful, data taking could start in ⇠ 2 � 5 years; the projected sensitivity

assumes that backgrounds can be controlled. A dotted line indicates longer-term R&D e↵orts. Bottom left

plot assumes DM scatters through an A0 with mA0 = 3m�. Five theory targets are shown as explained in

Section IV B. In addition to electron-recoil experiments, we show projections from nuclear-recoil experiments

(from Fig. 8). Gray shaded regions are constraints from LSND, E137, BaBar, and current WIMP nuclear-

recoil searches [50]. Bottom right plot assumes DM scatters through an A0 with mA0 ⌧ keV; a

freeze-in target is shown. Shaded gray regions are bounds from WIMP nuclear-recoil searches, stellar, and

BBN constraints [50]. The superconductor projection in bottom plots include in-medium e↵ects for an A0

and assume a dynamic range of 10 meV–10 eV. 50
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this white paper focuses on searches for scalar and vector dark matter candidates. Two other
Snowmass white papers in the Instrumentation Frontier (IF1) focus on quantum sensors [16, 17]
that are used for the purpose of UDM detection discussed in this work.

We have only begun the exploration of quantum technologies in this field, and improvements of
many orders of magnitude in the sensitivity to UDM are expected over the next decade. Just in the
few years since the previous Snowmass process, a wide range of new experiments have emerged.
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One physics goal of NA64++(µ) is not covered by the benchmark models, but is of particular
interest: it is the possibility to explain the long-standing deviation of the (g ≠ 2)µ from its Standard
Model value with a very weakly coupled vector boson dominantly coupled to muons. The Phase I short
run of NA64++(µ) with a muon beam provides a unique opportunity to test this.

A longer run of NA64++(µ) would provide sensitivity to millicharged particles (BC3) through
missing energy. This is compared to the reach of other experiments in figure 16. The motivation of an
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