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The NSF Institute for Artificial Intelligence and
Fundamental Interactions  (IAIFI  /aɪ-faɪ/  iaifi.org)

Deep Learning (AI)  +  Deep Thinking (Physics)  =  Deeper Understanding

Launched August 2020

http://iaifi.org
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Next Generation of AI + Physics Talent

IAIFI Postdoctoral Fellows

IAIFI Summer School & Workshop

Boyda Cuesta Golubeva Luo Micallef Mishra-Sharma Yang

AI for
Lattice
QCD

AI for
Cosmological
Observations

AI for
Neutrino 
Physics

AI Frontiers of 
Reinforcement 

Learning

GrossoGagliano

AI for 
Collider
Physics

AI for
Time-Domain
Astronomy

Albergo

AI and
Statistical 
Physics

Harvey

AI for
String

Theory

Dogra

Mathematical
Physics
of AI

Bright-Thonnney

AI for
Particle
Physics

⇒ ⇒⇒

Summer Workshop:   August 12–16, 2024

Application deadline typically early October

https://iaifi.org/summer-workshop
https://iaifi.org/fellows.html
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Machine Learning at DFP-Pheno 2024

Computing, Analysis Tools, 
and Data Handling

Machine Learning & AI: 
New Physics

Mini-Symposium: Neutrino Science 
with the DUNE Experiment

Mini-Symposium: 
Quantum Instrumentation

Machine Learning & AI: 
Collider Physics

Quantum Field & String Theory: 
Non-perturbativity and Amplitudes

QCD & Heavy Ion Physics: 
Jets and Energy Correlators

Dark Matter: WIMPs, 
DM Simulation and ML

Instrumentation: Neutrinos, 
Dark Matter, and Scintillation

Electroweak & Higgs Physics:  
Electroweak Physics at the LHC

Coordinating Panel for Software and 
Computing (CPSC) Townhall

Today at Lunch:  DOE PI Meeting 
Computational HEP and AI/ML

Compared to 3 talks 
at Pheno 2019!
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“…but what is the machine actually learning?”

What does it really mean for ML to be “Interpretable”?
(Or explainable, trustworthy, safe, robust, aligned, helpful, transparent, …)

Obligatory apology that examples below are
heavily drawn from my research in collider physics
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“…but what is the machine actually learning?”

My evolving perspective:

The desire for human interpretability often arises when 
we imperfectly specify the task we want to accomplish

A more actionable definition of interpretability: 
identifying low-rank structures in high-dimensional datasets



To benefit from machine learning advances, we must ensure 
that our algorithmic choices align with our scientific goals

When possible, pursue active interpretability, where you 
control the network architecture and training paradigm

Foundation models identify generically useful features, 
which challenge the importance of task alignment

Confronting the Black Box

Case Study in Jet Classification

The Next Frontier for Interpretability
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Iteration (n) EFP  � Chrom # ADO[EFP,CNN]Xn�1 AUC[EFP] ADO[HLNn,CNN]Xall AUC[HLNn]

0 Mjet + pT – – – – – 0.9259 0.9119

1 2 1
2 2 0.8144 0.8190 0.9570 0.9382

2 0 2 2 0.6377 0.8106 0.9673 0.9458

3 0 – 1 0.5460 0.6737 0.9692 0.9476

4 1 1
2 2 0.5274 0.8464 0.9712 0.9487

5 �1 – 1 0.5450 0.5882 0.9714 0.9504

6 1 1
2 4 0.5382 0.7678 0.9734 0.9523

7 �1 1
2 2 0.5561 0.5957 0.9741 0.9528

TABLE III. The EFPs selected during each iteration of the black-box guiding strategy beginning from HLN0, which uses just
pT and Mjet. For each iteration, the selected EFP is the one with the largest ADO with the CNN in the di↵erently-ordered
subspace Xn�1.

where 1 corresponds to f correctly ordering the points
and 0 corresponds to inverted ordering. Starting again
from the jet pT and Mjet information, we identify the
subset of event pairs that are incorrectly ordered:

Y0 =
n
(x, x0)

���TO
⇥
HLN0

⇤
(x, x0) = 0

o
. (36)

In each iteration, we find the EFP that has the highest
AUC in the incorrectly-ordered subspace,

EFPn = argmax
EFP2S

AUC[EFP]Yn�1 , (37)

construct a new joint classifier HLNn ⌘ HLN0 + nEFP,
and identify the next incorrectly-ordered subset of events:

Yn =
n
(x, x0)

���TO[HLNn](x, x
0) = 0

o
. (38)

Note that this procedure is completely independent of
the CNN.

The results from this truth-label guided procedure are
shown in in Fig. 5 in terms of the AUC and ADO. In
the first iteration, the classification performance is bet-
ter than in the black-box guided search, which makes
sense since the label guided method is trying to optimize
AUC directly. After 7 iterations, though, the classifica-
tion performance never rises above AUC = 0.951. As
mentioned in Sec. II B, isolating the incorrectly-ordered
pairs turns out to be counter productive, since some of
these pairs could never be ordered correctly even by the
optimal classifier. This emphasizes the value of using
the ADO relative to an already-trained network, to make
sure attention is focused on event pairs that have a chance
to be correctly ordered.

D. Physics Interpretation

By translating the CNN into a space of physically-
motivated observables, we can gain physical insight into
the observables used in the classification decision. In
particular, the first few observables in Table III give us
a glimpse at a possible alternative history for the field
of jet substructure, if combinations like C2 and D2 had
not been previously identified. Distributions of the EFPs
found in the first four iterations are shown in Fig. 7.

After pT and Mjet, the first EFP selected by the black-
box guided strategy is:

⇣
=2,�=

1

2

⌘

. (39)

The fact that a  = 2 observable shows up early in the
iterative procedure bolsters the evidence from Sec. IVA
that these kinds of observables are important for mapping
the CNN strategy. This is a chromatic number c = 2
graph, so just like jet mass, it probes deviations from 1-
prong substructure. However, it uses a 5-point correlator
(unlike mass which is a 2-point correlator) and it uses the
� = 1

2
angular exponent (unlike mass which uses � = 2).

Putting these together, Eq. (39) is an IRC-unsafe probe
of hard, small-angle radiation.

The second EFP is also IRC unsafe and also corre-
sponds to a c = 2 graph:

(=0,�=2). (40)

Here, though, we have  = 0 and � = 2, which is a probe
of soft, wide-angle radiation. It is interesting that the
black-box guided strategy selects these two complemen-
tary c = 2 observables in the first two iterations, indicat-
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Likelihood Ratio Trick
Key example of simulation-based inference
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[see e.g. Cranmer, Pavez, Louppe, arXiv 2015; D’Agnolo, Wulzer, PRD 2019;
simulation-based inference in Cranmer, Brehmer, Louppe, PNAS 2020;

relation to f-divergences in Nguyen, Wainwright, Jordan, AoS 2009; Nachman, Thaler, PRD 2021]

Learnable Function:

Training Data: Finite samples P and Q

Goal: Estimate p(x) / q(x)

f(x) parametrized by, e.g., neural networks 

Loss Function(al):  L = �
⌦
log f(x)

↵
P
+
⌦
f(x)� 1

↵
Q

<latexit sha1_base64="/BAofgnPH6B4QebhXUNq+8pNlqE="></latexit><latexit sha1_base64="/BAofgnPH6B4QebhXUNq+8pNlqE="></latexit><latexit sha1_base64="/BAofgnPH6B4QebhXUNq+8pNlqE="></latexit><latexit sha1_base64="kPIkJdH6omNFCZSl9SSaGcCTYJg="></latexit>

Many HEP problems can be 
expressed in this form!

x

prob(x)

P
Q

https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/math/0510521
https://arxiv.org/abs/2101.07263
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[see e.g. Cranmer, Pavez, Louppe, arXiv 2015; D’Agnolo, Wulzer, PRD 2019;
simulation-based inference in Cranmer, Brehmer, Louppe, PNAS 2020;

relation to f-divergences in Nguyen, Wainwright, Jordan, AoS 2009; Nachman, Thaler, PRD 2021]

Learnable Function:

Training Data: Finite samples P and Q

Goal: Estimate p(x) / q(x)

f(x) parametrized by, e.g., neural networks 

�min
f(x)

L =

Z
dx p(x) log

p(x)

q(x)
<latexit sha1_base64="DHXBjqaYO+bfMooFpxGVp6lB6cI="></latexit><latexit sha1_base64="DHXBjqaYO+bfMooFpxGVp6lB6cI="></latexit><latexit sha1_base64="DHXBjqaYO+bfMooFpxGVp6lB6cI="></latexit><latexit sha1_base64="TU7q4dQBpc+LJp2rM/pH2uS50uM="></latexit>

Loss Function(al):  

Asymptotically:  

Kullback–Leibler divergence

argmin
f(x)

L =
p(x)

q(x)
<latexit sha1_base64="C44EPfIX41lNtDowReWFHN5q4Ug="></latexit><latexit sha1_base64="C44EPfIX41lNtDowReWFHN5q4Ug="></latexit><latexit sha1_base64="C44EPfIX41lNtDowReWFHN5q4Ug="></latexit><latexit sha1_base64="aV3VBbPgU5blfbcq1YETF1NKiLY="></latexit>

Likelihood ratio

L = �
⌦
log f(x)

↵
P
+
⌦
f(x)� 1

↵
Q

<latexit sha1_base64="/BAofgnPH6B4QebhXUNq+8pNlqE="></latexit><latexit sha1_base64="/BAofgnPH6B4QebhXUNq+8pNlqE="></latexit><latexit sha1_base64="/BAofgnPH6B4QebhXUNq+8pNlqE="></latexit><latexit sha1_base64="kPIkJdH6omNFCZSl9SSaGcCTYJg=">AAAC73iclVLLahsxFNVM+kjcR5x02Y2oKaQ0MaOp68ciEJpNFl04UCcGz2A0smYiotFMJU2oGZRt8gfdhW77Sf2BfEC+oPLYgdophV64cDj3nnsuV4pyzpT2vF+Ou/bo8ZOn6xu1Z89fvNysb22fqKyQhA5IxjM5jLCinAk60ExzOswlxWnE6Wl0fjirn15QqVgmvuhpTsMUJ4LFjGBtqXH97jPch3swiFgScCwSTmHAswSWQTV7JJMoLL3mRw/12mjXa3pV7N4zJt759s7M5bKSj1eUthuhuRJ12jNlr9f1Udf0DXy/5Pt/lnsQ/cu21237rXal7iC/GuN3Wh9a5tiM6437ofAhQAvQAIvoj+u3wSQjRUqFJhwrNUJersMSS80Ip6YWFIrmmJzjhI4sFDilKiyrdQx8a5kJjDNpU2hYsX8qSpwqNU0j25lifaZWazPyb7VRoeNuWDKRF5oKMjeKCw51BmcPDSdMUqL51AJMJLO7QnKGJSbafocll5hORZqbmj0MWj3DQ3DiN5HXRMetxsGnxYnWwWvwBuwABDrgAByBPhgA4gydS+fKuXa/ut/dG/fHvNV1FppXYCncn78B94Pc0A==</latexit>

x

x

prob(x)

log r(x)

Many HEP problems can be 
expressed in this form!

P
Q

https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/math/0510521
https://arxiv.org/abs/2101.07263
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[see e.g. Cranmer, Pavez, Louppe, arXiv 2015; D’Agnolo, Wulzer, PRD 2019;
simulation-based inference in Cranmer, Brehmer, Louppe, PNAS 2020;

relation to f-divergences in Nguyen, Wainwright, Jordan, AoS 2009; Nachman, Thaler, PRD 2021]

x

x

prob(x)

log r(x)

Asymptotically, same structure as Lagrangian mechanics!

Action:

Lagrangian:

Euler-Lagrange: Solution:

L =

Z
dxL(x)

<latexit sha1_base64="8vxtnXiFvfGW0xbeZIJI9D9XEPA="></latexit><latexit sha1_base64="8vxtnXiFvfGW0xbeZIJI9D9XEPA="></latexit><latexit sha1_base64="8vxtnXiFvfGW0xbeZIJI9D9XEPA="></latexit><latexit sha1_base64="4miLyAx6p6t5RquYQ9AkM/HLRVc=">AAAB7XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwf5AO5RM5k4bmmSGJCMMY1/ArW/gTnwiX8DnMP1ZWOuBwOGchHvzxbngxgbBl1fb2d3bP6gf+kcN//jktNnomazQDLssE5kexNSg4Aq7lluBg1wjlbHAfjy7X/T9Z9SGZ+rJljlGkk4UTzmj1kWdcbMVtIOlyLYJ16YFa42b36MkY4VEZZmgxgzDILdRRbXlTODcHxUGc8pmdIJDZxWVaKJqueacXLokIWmm3VGWLNPfLyoqjSll7G5Kaqfmb7cI/+uGhU1vo4qrvLCo2GpQWghiM7L4M0m4RmZF6QxlmrtdCZtSTZl1ZDampFgqmc99xyX8S2Hb9K7bYdAOHwOowzlcwBWEcAN38AAd6AKDBF7hzXvx3r2PFb+atwZ5BhvyPn8A3biSog==</latexit><latexit sha1_base64="8Rw3IBTH0LhNxEUFDTC644OV9bg=">AAACGXicbZDNSgMxFIXv+FvrX3XrJiqigpQZN7oRBDcuXChYFTqlZNI7GsxkhuSOtAzzCL6GL+BW38CduPAFfA7T2oW1Xggczkm4J1+UKWnJ9z+9icmp6ZnZylx1fmFxabm2snBl09wIbIhUpeYm4haV1NggSQpvMoM8iRReR/cn/fz6AY2Vqb6kXoathN9qGUvByVnt2vYZO2Kh1MTCdRYSdqnolF0W7rEw4XQnuCrOyp3ubru26df9wbBxEQzFJgznvF37CjupyBPUJBS3thn4GbUKbkgKhWU1zC1mXNzzW2w6qXmCtlUMPlSyLed0WJwad1y1gfv7RcETa3tJ5G72W9q/Wd/8L2vmFB+2CqmznFCLn0VxrhilrE+HdaRBQarnBBdGuq5M3HHDBTmGI1ti7OkkK6sOTPAXw7i42q8Hfj248KECa7ABOxDAARzDKZxDAwQ8wjO8wKv35L157z8IJ7why1UYGe/jGy/vok0=</latexit><latexit sha1_base64="8Rw3IBTH0LhNxEUFDTC644OV9bg=">AAACGXicbZDNSgMxFIXv+FvrX3XrJiqigpQZN7oRBDcuXChYFTqlZNI7GsxkhuSOtAzzCL6GL+BW38CduPAFfA7T2oW1Xggczkm4J1+UKWnJ9z+9icmp6ZnZylx1fmFxabm2snBl09wIbIhUpeYm4haV1NggSQpvMoM8iRReR/cn/fz6AY2Vqb6kXoathN9qGUvByVnt2vYZO2Kh1MTCdRYSdqnolF0W7rEw4XQnuCrOyp3ubru26df9wbBxEQzFJgznvF37CjupyBPUJBS3thn4GbUKbkgKhWU1zC1mXNzzW2w6qXmCtlUMPlSyLed0WJwad1y1gfv7RcETa3tJ5G72W9q/Wd/8L2vmFB+2CqmznFCLn0VxrhilrE+HdaRBQarnBBdGuq5M3HHDBTmGI1ti7OkkK6sOTPAXw7i42q8Hfj248KECa7ABOxDAARzDKZxDAwQ8wjO8wKv35L157z8IJ7why1UYGe/jGy/vok0=</latexit><latexit sha1_base64="9xcQnj+K9N9lHlXUPtm5vZCRZn4="></latexit><latexit sha1_base64="5vPcAywGBzBbtTW3rmHDgI638IQ="></latexit><latexit sha1_base64="8vxtnXiFvfGW0xbeZIJI9D9XEPA="></latexit><latexit sha1_base64="8vxtnXiFvfGW0xbeZIJI9D9XEPA="></latexit><latexit sha1_base64="8vxtnXiFvfGW0xbeZIJI9D9XEPA="></latexit><latexit sha1_base64="8vxtnXiFvfGW0xbeZIJI9D9XEPA="></latexit><latexit sha1_base64="5vPcAywGBzBbtTW3rmHDgI638IQ="></latexit>

@L
@f

= 0
<latexit sha1_base64="7xwMYpS6lejwTNM/LMAnO42aG40="></latexit><latexit sha1_base64="7xwMYpS6lejwTNM/LMAnO42aG40="></latexit><latexit sha1_base64="7xwMYpS6lejwTNM/LMAnO42aG40="></latexit><latexit sha1_base64="jTwafL38s4seBwJzgmInpAJbgnQ="></latexit>

f(x) =
p(x)

q(x)
<latexit sha1_base64="quzVQzouxbo/tOnoZlw/ZCJVKpE=">AAACunicbVFdb9MwFHXC1ygwOuCNF4sKaZuqKg6lHxJIFfDAC2JIdJvURJXj3mRWHcfYDloV5V/w5/grPOGkm8Q6rmTp6NxzfL8SJbixQfDb8+/cvXf/wd7DzqPHT/afdg+enZqi1AzmrBCFPk+oAcElzC23As6VBponAs6S9ccmf/YTtOGF/G43CuKcZpKnnFHrqGX3V6eK2l8WOkviKhi8Dch0RPrBIGijf83U6eHlUY3f4yjVlFU7LqckZOsi41Hjmk4nIZnUqnHVu/LpZBQOR618TMLWF46Hb4b1j1a+7Pau6+PbgFyB3uwFauNkeeDtR6uClTlIywQ1ZkECZeOKasuZgLoTlQYUZWuawcJBSXMwcdX2VOPXjlnhtNDuSYtb9l9HRXNjNnnilDm1F2Y315D/yy1Km07iiktVWpBsWygtBbYFbm6BV1wDs2LjAGWau14xu6BuvdZd7EaVFDYyV26OT+Dm0/DF1fqqQFNb6OMqojrL6WXt5s2ifoPcBsnuvm6D03BAggH5NuzNPmxXifbQS/QKHSKCxmiGPqMTNEcM/fGwd+Qd++/8xOf+eiv1vSvPc3QjfPsX+3PNaQ==</latexit><latexit sha1_base64="quzVQzouxbo/tOnoZlw/ZCJVKpE="></latexit><latexit sha1_base64="quzVQzouxbo/tOnoZlw/ZCJVKpE="></latexit><latexit sha1_base64="htVSx2ZZujuo2Hdt9ibMaWlHcBA="></latexit>

L(x) = �p(x) log f(x) + q(x)
�
f(x)� 1

�
<latexit sha1_base64="K298pScNYU/Ys1xSLKz/x92RmiM="></latexit><latexit sha1_base64="K298pScNYU/Ys1xSLKz/x92RmiM="></latexit><latexit sha1_base64="K298pScNYU/Ys1xSLKz/x92RmiM="></latexit><latexit sha1_base64="CIzs/gC4UpWwhuj1TBR+6hF4fYI="></latexit>

Requires shift in focus from solving problems to specifying problems

https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/math/0510521
https://arxiv.org/abs/2101.07263
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“What is the machine learning?”

For this loss function, an estimate of the likelihood ratio 
derived from sampled data and regularized by the 

network architecture and training paradigm
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“What is the machine learning?”

For this loss function, an estimate of the likelihood ratio 
derived from sampled data and regularized by the 

network architecture and training paradigm

“But I want to understand what it has learned!”

Do you really expect the 
likelihood ratio to take on a 

particularly nice functional form?

“…”

N.B. QFT calculations 
often involve special 

functions that have no 
elementary representation 
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Why might we want ML to be “Interpretable”?
Or explainable, trustworthy, safe, robust, aligned, helpful, transparent, …

Could be working in non-asymptotic regime
Training data might be biased in some way
Result could depend on poorly modeled features
Limited ability to perform independent validation
Need for compact symbolic expressions
Desire to generalize away from specific context
…

Scientific Reasons: 

Sociological Reasons: Skeptical of algorithmic/statistical/computational reasoning
Need to explain decisions to external stakeholders
Desire to manage risks from unforeseen outcomes
…

All valid reasons, but suggest imperfect specification of our initial goals!
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Likelihood Ratio Trick in HEP Apologies that examples 
are all from my own work

Detector Unfolding Resolution EstimationMonte Carlo Reweighting

For these applications, goal is “accuracy” more than “interpretability”
Ask me offline why I think standard methods to assess accuracy, quantify uncertainties, and validate results are incomplete

Simulation

Sy
nt

he
ti

c
N

at
ur

al

Detector-level

Data

Particle-level

Generation

Truth

Pull Weights

Push Weights

Step 1: 
Reweight Sim. to Data

Step 2: 
Reweight Gen.

νn−1

ωn

−−→ νn
<latexit sha1_base64="USI/aHUkKNmen4gwHqyTXZ7rTGs="></latexit><latexit sha1_base64="USI/aHUkKNmen4gwHqyTXZ7rTGs="></latexit><latexit sha1_base64="USI/aHUkKNmen4gwHqyTXZ7rTGs="></latexit><latexit sha1_base64="aANR4xqa5G8N4A3PGP5I4W3UWFE="></latexit>

νn−1

Data
−−−→ ωn
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[Andreassen, Komiske, Metodiev, Nachman, 
JDT, PRL 2020; + Suresh, ICLR SimDL 2021]

[Nachman, JDT, PRD 2020; inspired by 
Andersen, Gutschow, Maier, Prestel, EPJC 2020]

[Gambhir, Nachman, JDT, PRL 2022, PRD 2022]

[ ̂σ2
z(x)]ij = − [∂2T (x , z)

∂zi ∂zj ]−1

z= ̂z

https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/2105.04448
https://arxiv.org/abs/2007.11586
https://arxiv.org/abs/2005.09375
https://arxiv.org/abs/2205.03413
https://arxiv.org/abs/2205.05084
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“Interpretability” as the Primary Goal
E.g. modeling nuclear binding energies

Cf. Semi-Empirical
Mass Formula

[Weizsäcker, 1935]

454 C.F.v .  Wei~s~cker, 

kinetische Energie n~therungsweise proportional zu (Z + N - -  1) sein mul~, 
da wegen der Abseparierung der Sehwerpunktsbewegung nur 3. (Z + N - -  1) 
unabh~ngige Freiheitsgrade fiir die Teilchenbewegung im Kern vorhanden 
sind (oder anders gesagt, da man im Ausdruek Mv~/2 nieht die wirkliche, 
sondern die ,,reduzierte Masse" der Teilehen einsetzen mul3). Wir setzen 
also E o ,~ (Z + N -  1) 2/3 und erhalten als Sehlui3formel ftir die Gesamt- 
energ]e : 

+ (-2-f ~)[iZ+ N--~)--r(Z+N--1) ~] 

+ro(Z+N)'13 Z + N  ) - - \ 2 ]  J" " 
Die Konstanten ~, fl, y, (~, r o wurden nun auf zwei Wegen bestimmt. 
Methode 1. Die Energien der geradzahligen leiehten Kerne wer4en 

zugrunde gelegt. ~ wird vernaehl~ssigt, r o witlkiirlieh gleich 0,45 gew~hlt 
(w~re c[ie Diehte in den Kernen konstant, so wiirde aus den effektiven 
Radien der ~-Strahler etwa r o = 0,5 folgen), e = ] / ~  + f12 __~ and ~, 
werden aus 4er Bedingung bestimmt, 4a13 die Energien yon C~ ~ und O~ ~ 
genau dargestellt werden sollen. Eine zweite Beziehung zwisehen ~ un4 fl 
[die ,,Breite" 4er t typerbel (44)] lielert die Bedingung, die Bindungsenergie 
yon C~ ~ solle etwas geringer sein als die empirische Bindungsenergie yon ~ 4 .  
Der Vergleich der theoretisehen Energien der iibrigen leiehten Kerne [der 
geradzahligen nach (51), der ungeradzahligen nach 4er linearen Interpolation 
yon w 4] zeigt, dal~ nur geringe naehtr~gliehe Anderungen der gewonnenen 

trod fl notwendig sind. Die Ergebnisse sin4 in Tabelle 4 und 5 und in 
Fig. 3 angegeben. 

Tabelle 3. K o n s t a n t e n  in (51). 
Nach Methode I. Nach Methode II. 

= 1,6 ~ ~ 2,6 
fl = 13,9 fl = 18,4 
y ~ 0,6 y ~ 1,07 

(~  = O) ~ = 1 ,1  
r o =  0,45 t o =  0,42 

Methode 11. Die Z/N-Werte (die ,,Rinne") und die Packungsanteile 
der sehweren Kerne werden zugrunde gelegt. Zur Abkiirztmg der Rechnung 
wurden o~ und fl aus dem rohen Wert s = 16, der sieh in w 8 ergab (Tabelle 2) 
und aus der Bedingung E (C~ 4) ~ E (N17 ~) yon vornherein festgelegt. 7, (~ 
und r o wurden bestimmt aus den Massendefekten yon O~ 6 und ngso'~ 200 nach 
(51) und aus der Bedingung 

O E (SO, 1~0)\ ~(2-- - - -~  / = O, (59) 
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Latent Space Topography

[Kitouni, Nolte, Trifinopoulos, Kantamneni, Williams, ICML 2023;
+ Pérez-Díaz, to appear ICML 2024]

Symbolic Regression

[Munoz, Udrescu, Garcia Ruiz, arXiv 2024; see also 
Cranmer, Sanchez-Gonzalez, Battaglia, Xu, Cranmer, Spergel, Ho, NeurIPS 2020]
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TABLE IV. Analytical expression for the binding energy, BEMISR, discovered by the MISR model for the first ten interactions.
Each row represents a distinct iteration of the MISR process, showing the mathematical expression derived for each iteration.
The expressions detail how the nuclear binding energy (BE) is modeled as a function of nuclear properties such as neutron
number (N), proton number (Z), atomic mass (A), isospin asymmetry (I), and the Casten factor (P ).
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TABLE V. Analytical expression for the charge radius, rC , discovered by the MISR model for the first ten interactions. It
includes coe�cients and terms involving atomic mass (A), proton number (Z), neutron number (N), the Casten factor (P ),
valence protons (Np), and valence neutrons (Nn). The expressions are designed to incrementally capture the details of the
nuclear charge radius, reflecting the refinement of the model through each iteration.

From Neurons to Neutrons: A Case Study in Interpretability

Figure 9. Parity split RP (top row) and orderedness (bottom row)
calculated on N and Z embeddings as a function of validation
error. Zero values were clipped to 10�3 for visualization. Error
bars are standard deviations and each point groups models trained
with the same training fraction.

following quantity:

RP =
2 · d(even, odd)

d(even, even) + d(odd, odd)
,

where d(x, y) is the average pairwise L2-distance between
elements in x and y. This quantity is the ratio of the av-
erage distance of embeddings of different parity to that of
embeddings of the same parity. Figure 9 illustrates how RP,
calculated on proton embeddings, correlates with validation
performance. The clear trend observed suggests that parity
is an important indicator of model performance and possibly
an important feature of the data.

  

Figure 10. Parity split RP as a function of training time for N
and Z embeddings for memorizing and generalizing models. The
uncertainties are computed over 3 data and initialization seeds.

It turns out that an important feature of nuclear properties
is the tendency of nuclear constituents (both protons and
neutrons) to form pairs.7 Numerous characteristics depend
on the parity (even/odd) of N and Z. This is evident in the
last term of the SEMF, which changes sign based on the
parity.

Figure 11. (Top) penultimate layer PCs and (bottom) physics terms
with high similarity.

5.2. Hidden layer features

In the previous subsection, we explored proton and neutron
embeddings to extract valuable information about models
that generalize well. We discovered some properties of these
models and were able to map them to well-known physics
concepts. However, the functional relationship between
initial embeddings and the output is often unclear. Now we
focus on the activations of the penultimate layer, which does
not have this drawback since it maps linearly to the output.
We continue to use PCA projections to visualize and analyze
these high-dimensional features. As seen in Figure 4, we
can recover much of a model’s performance using just a few
of these features. We observe that, similar to those we see in
the embeddings, the principal components of the activations
exhibit a rich structure, including terms that are smooth
and slowly varying, others that have a high-frequency and
small-scale, and some that are highly structured. Examples
from each category are shown in the top row of Figure 11,
and a larger collection of PCs can be found in Figure 21 of
the Appendix.

We will aim to find human-derived descriptions of the
problem in these latent representations, and we will do
so based on a simple matching heuristic. Let x̃i be the
i-th vector of neural network features (given by the i-th
PC) and yj the j-th the physical term vector produced by
evaluating the term (see C.2,C.3 for all terms) at all val-
ues of N and Z. We use the cosine similarity, defined as
sim(x̃i,yj) = x̃i · yj/||x̃i||||yj ||, to compare the two sets

7This is related to the so-called Pauli Exclusion Principle (Pauli,
1925).
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embeddings to extract valuable information about models
that generalize well. We discovered some properties of these
models and were able to map them to well-known physics
concepts. However, the functional relationship between
initial embeddings and the output is often unclear. Now we
focus on the activations of the penultimate layer, which does
not have this drawback since it maps linearly to the output.
We continue to use PCA projections to visualize and analyze
these high-dimensional features. As seen in Figure 4, we
can recover much of a model’s performance using just a few
of these features. We observe that, similar to those we see in
the embeddings, the principal components of the activations
exhibit a rich structure, including terms that are smooth
and slowly varying, others that have a high-frequency and
small-scale, and some that are highly structured. Examples
from each category are shown in the top row of Figure 11,
and a larger collection of PCs can be found in Figure 21 of
the Appendix.

We will aim to find human-derived descriptions of the
problem in these latent representations, and we will do
so based on a simple matching heuristic. Let x̃i be the
i-th vector of neural network features (given by the i-th
PC) and yj the j-th the physical term vector produced by
evaluating the term (see C.2,C.3 for all terms) at all val-
ues of N and Z. We use the cosine similarity, defined as
sim(x̃i,yj) = x̃i · yj/||x̃i||||yj ||, to compare the two sets

7This is related to the so-called Pauli Exclusion Principle (Pauli,
1925).
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is an important indicator of model performance and possibly
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Identifying low-rank structures in high-dimensional datasets
This is an actionable definition of interpretability, which may or may not be relevant to the physics problem of interest

N = neutron number
 Z = proton number
 A = atomic mass
   I = isospin asymmetry
  P = Casten factor

https://doi.org/10.1007/BF01337700
https://arxiv.org/abs/2306.06099
https://arxiv.org/abs/2404.11477
https://arxiv.org/abs/2006.11287


To benefit from machine learning advances, we must ensure 
that our algorithmic choices align with our scientific goals

When possible, pursue active interpretability, where you 
control the network architecture and training paradigm

Foundation models identify generically useful features, 
which challenge the importance of task alignment

Confronting the Black Box

Case Study in Jet Classification

The Next Frontier for Interpretability

Jesse Thaler (MIT, IAIFI) — Interpretable Machine Learning for Particle Physics
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Iteration (n) EFP  � Chrom # ADO[EFP,CNN]Xn�1 AUC[EFP] ADO[HLNn,CNN]Xall AUC[HLNn]

0 Mjet + pT – – – – – 0.9259 0.9119

1 2 1
2 2 0.8144 0.8190 0.9570 0.9382

2 0 2 2 0.6377 0.8106 0.9673 0.9458

3 0 – 1 0.5460 0.6737 0.9692 0.9476

4 1 1
2 2 0.5274 0.8464 0.9712 0.9487

5 �1 – 1 0.5450 0.5882 0.9714 0.9504

6 1 1
2 4 0.5382 0.7678 0.9734 0.9523

7 �1 1
2 2 0.5561 0.5957 0.9741 0.9528

TABLE III. The EFPs selected during each iteration of the black-box guiding strategy beginning from HLN0, which uses just
pT and Mjet. For each iteration, the selected EFP is the one with the largest ADO with the CNN in the di↵erently-ordered
subspace Xn�1.

where 1 corresponds to f correctly ordering the points
and 0 corresponds to inverted ordering. Starting again
from the jet pT and Mjet information, we identify the
subset of event pairs that are incorrectly ordered:

Y0 =
n
(x, x0)

���TO
⇥
HLN0

⇤
(x, x0) = 0

o
. (36)

In each iteration, we find the EFP that has the highest
AUC in the incorrectly-ordered subspace,

EFPn = argmax
EFP2S

AUC[EFP]Yn�1 , (37)

construct a new joint classifier HLNn ⌘ HLN0 + nEFP,
and identify the next incorrectly-ordered subset of events:

Yn =
n
(x, x0)

���TO[HLNn](x, x
0) = 0

o
. (38)

Note that this procedure is completely independent of
the CNN.

The results from this truth-label guided procedure are
shown in in Fig. 5 in terms of the AUC and ADO. In
the first iteration, the classification performance is bet-
ter than in the black-box guided search, which makes
sense since the label guided method is trying to optimize
AUC directly. After 7 iterations, though, the classifica-
tion performance never rises above AUC = 0.951. As
mentioned in Sec. II B, isolating the incorrectly-ordered
pairs turns out to be counter productive, since some of
these pairs could never be ordered correctly even by the
optimal classifier. This emphasizes the value of using
the ADO relative to an already-trained network, to make
sure attention is focused on event pairs that have a chance
to be correctly ordered.

D. Physics Interpretation

By translating the CNN into a space of physically-
motivated observables, we can gain physical insight into
the observables used in the classification decision. In
particular, the first few observables in Table III give us
a glimpse at a possible alternative history for the field
of jet substructure, if combinations like C2 and D2 had
not been previously identified. Distributions of the EFPs
found in the first four iterations are shown in Fig. 7.

After pT and Mjet, the first EFP selected by the black-
box guided strategy is:

⇣
=2,�=

1

2

⌘

. (39)

The fact that a  = 2 observable shows up early in the
iterative procedure bolsters the evidence from Sec. IVA
that these kinds of observables are important for mapping
the CNN strategy. This is a chromatic number c = 2
graph, so just like jet mass, it probes deviations from 1-
prong substructure. However, it uses a 5-point correlator
(unlike mass which is a 2-point correlator) and it uses the
� = 1

2
angular exponent (unlike mass which uses � = 2).

Putting these together, Eq. (39) is an IRC-unsafe probe
of hard, small-angle radiation.

The second EFP is also IRC unsafe and also corre-
sponds to a c = 2 graph:

(=0,�=2). (40)

Here, though, we have  = 0 and � = 2, which is a probe
of soft, wide-angle radiation. It is interesting that the
black-box guided strategy selects these two complemen-
tary c = 2 observables in the first two iterations, indicat-

17
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The More Things Change…
Jet classification, from my talk at Pheno 2019

 17Jesse Thaler — Deep Learning (and Deep Thinking) in Collider Physics

Binary Classification

vs.
Quark Gluon

Find such that
Quark

Gluon
h

 !
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(Neyman-Pearson lemma)
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e.g.

Classifier1 0

Signal Background

assuming trustable
training data

Application of Likelihood Ratio Trick Interpretability in Machine Learning

(see backup for
detailed architecture)

[Komiske, Metodiev, JDT, 1810.05165;
special case of Zaheer, Kottur, Ravanbakhsh, Poczos, Salakhutdinov, Smola, 1703.06114]
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Introducing Energy Flow Networks
An architecture designed for interpretability

Latent space of dim ℓ

Flexible enough to describe any* IRC-safe observable
(assuming large enough ℓ)

Linear weights

Va
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Parametrized with Neural Networks

Generalization:  Particle Flow Networks (aka “Deep Sets”)
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Ready for the CMOA?
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Coordinate transformation to the emission plane

[Komiske, Metodiev, JDT, 1810.05165; see also Dreyer, Salam, Soyez, 1807.04758]

Does this Really Count as “Interpretable”?
Visualizing Energy Flow Networks

Trying to plot 
256 dimensional 
latent space

See Pheno 2019 
talk for insights 
at L = 2

[Komiske, Metodiev, JDT, JHEP 2019]

https://arxiv.org/abs/1810.05165
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Three Lessons since Pheno 2019
Highlighting the power of active interpretability

If you have a catalog of trusted observables, you can 
translate a black-box algorithm on low-level inputs 
into a simple classifier on high-level features

If there are simple operations like multiplication and 
sums that don’t really require “interpretation”, you can 
bake those into your machine learning architecture

Apologies that examples 
are all from my own work

If there is a property you want your network to have, 
make sure to impose algorithmic guardrails, otherwise 
the machine might pursue undesirable optimization

14
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2 2 0.5274 0.8464 0.9712 0.9487

5 �1 – 1 0.5450 0.5882 0.9714 0.9504

6 1 1
2 4 0.5382 0.7678 0.9734 0.9523

7 �1 1
2 2 0.5561 0.5957 0.9741 0.9528

TABLE III. The EFPs selected during each iteration of the black-box guiding strategy beginning from HLN0, which uses just
pT and Mjet. For each iteration, the selected EFP is the one with the largest ADO with the CNN in the di↵erently-ordered
subspace Xn�1.

where 1 corresponds to f correctly ordering the points
and 0 corresponds to inverted ordering. Starting again
from the jet pT and Mjet information, we identify the
subset of event pairs that are incorrectly ordered:

Y0 =
n
(x, x0)

���TO
⇥
HLN0

⇤
(x, x0) = 0

o
. (36)

In each iteration, we find the EFP that has the highest
AUC in the incorrectly-ordered subspace,

EFPn = argmax
EFP2S

AUC[EFP]Yn�1 , (37)

construct a new joint classifier HLNn ⌘ HLN0 + nEFP,
and identify the next incorrectly-ordered subset of events:

Yn =
n
(x, x0)

���TO[HLNn](x, x
0) = 0

o
. (38)

Note that this procedure is completely independent of
the CNN.
The results from this truth-label guided procedure are

shown in in Fig. 5 in terms of the AUC and ADO. In
the first iteration, the classification performance is bet-
ter than in the black-box guided search, which makes
sense since the label guided method is trying to optimize
AUC directly. After 7 iterations, though, the classifica-
tion performance never rises above AUC = 0.951. As
mentioned in Sec. II B, isolating the incorrectly-ordered
pairs turns out to be counter productive, since some of
these pairs could never be ordered correctly even by the
optimal classifier. This emphasizes the value of using
the ADO relative to an already-trained network, to make
sure attention is focused on event pairs that have a chance
to be correctly ordered.

D. Physics Interpretation

By translating the CNN into a space of physically-
motivated observables, we can gain physical insight into
the observables used in the classification decision. In
particular, the first few observables in Table III give us
a glimpse at a possible alternative history for the field
of jet substructure, if combinations like C2 and D2 had
not been previously identified. Distributions of the EFPs
found in the first four iterations are shown in Fig. 7.

After pT and Mjet, the first EFP selected by the black-
box guided strategy is:

⇣
=2,�=

1

2

⌘

. (39)

The fact that a  = 2 observable shows up early in the
iterative procedure bolsters the evidence from Sec. IVA
that these kinds of observables are important for mapping
the CNN strategy. This is a chromatic number c = 2
graph, so just like jet mass, it probes deviations from 1-
prong substructure. However, it uses a 5-point correlator
(unlike mass which is a 2-point correlator) and it uses the
� = 1

2
angular exponent (unlike mass which uses � = 2).

Putting these together, Eq. (39) is an IRC-unsafe probe
of hard, small-angle radiation.

The second EFP is also IRC unsafe and also corre-
sponds to a c = 2 graph:

(=0,�=2). (40)

Here, though, we have  = 0 and � = 2, which is a probe
of soft, wide-angle radiation. It is interesting that the
black-box guided strategy selects these two complemen-
tary c = 2 observables in the first two iterations, indicat-
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representation, which converts the latent representation
into the observable O. The Deep Sets theorem, as dis-
cussed in Refs. [34, 37], guarantees that any (infrared and
collinear (IRC)-safe) observable can be approximated ar-
bitrarily well for a su�ciently expressive F and �, and
large enough L. However, the theorem makes no guar-
antees on the complexity of � or F , and may require a
very large L.

In this paper, we introduce Moment Pooling, a natu-
ral extension of Deep Sets architectures that significantly
reduces the number of latent dimensions L needed while
maintaining or improving its performance. The Moment
Pooling operation generalizes the expectation value of �
in Eq. (1) to higher order multivariate moments:

Ok(P) ⌘ F
�
h�a

iP , h�a1�a2iP , ... h�a1 ...�akiP
�
, (2)

where k is the highest order moment considered. This
procedure is inspired by histogram pooling [38], in which
the � are histograms binned in x. We focus primarily on
applying Moment Pooling to EFNs in the collider physics
context, where Eq. (2) defines an order k Moment EFN,
which reduces to the ordinary EFN when k = 1. Alterna-
tive modifications of EFNs are discussed in Refs. [39, 40].

We show that for k > 1, a Moment EFN enables the
same or better performance on quark/gluon jet classifica-
tion as an EFN, but with a much smaller latent dimen-
sion L, allowing the same machine-learned observables
to be constructed using fewer base functions. With fewer
latent dimensions, it is much easier to directly visualize
the model’s internal representations and therefore eas-
ier to directly interpret and find closed-form expressions
for the learned observable. As a concrete example, an
order k = 4 Moment EFN with a single latent dimen-
sion achieves comparable performance on quark/gluon
jet classification to an ordinary EFN with 4 latent di-
mensions. We are able to directly plot this latent dimen-
sion and find that it takes a remarkably simple closed
form, the “log angularity” observable, which bears many
similarities to jet angularities [41, 42].

The rest of the paper is organized as follows: In Sec. II,
we give an overview of moment pooling and the Moment
EFN architecture, show how it naturally arises as a gener-
alization of Deep Sets, and introduce the idea of e↵ective
latent dimensions. In Sec. III, we demonstrate how the
Moment EFN may be used for quark/gluon discrimina-
tion, and how Moment EFNs outperform ordinary EFNs
as L and k are varied. In Sec. IV, we analyze the la-
tent spaces of small-L Moment EFNs and attempt to
understand them in terms of simple closed-form fits, al-
lowing for analytic observables to be extracted from the
model. Finally, in Sec. V, we present our conclusions
and outlook. Implementation details of the architecture
may be found in App. A. An additional study involving
regression on jet angularities, rather than classification,
using Moment EFNs may be found in App. B. Additional
studies complementing Sec. III, involving top/QCD dis-
crimination and Moment Particle Flow Networks (PFNs)
rather than EFNs, may be found in App. C.

II. MOMENT POOLING

We begin with the construction of the Moment Pool-
ing operation. We first define Moment Pooling as an
extension of Deep Sets and apply it to EFNs, a form
of weighted Deep Sets, to produce Moment EFNs in
Sec. IIA. Then, in Sec. II B, we discuss how Moment
Pooling is capable of reducing the latent dimension of
EFNs through the concept of e↵ective latent dimensions.

A. The Moment Energy Flow Network

The Moment Pooling operation, as given by Eq. (2),
is a generalization of Deep Sets-style architectures. The
form of Eq. (2) is motivated by the observation that the
summation step over the latent representation �a in Deep
Sets architectures, generalized to weighted sums in EFNs,
can be regarded as taking an expectation value of the L-
dimensional random variable �a(x) defined over a base
space Rd, taken over P:

h�a
iP ⌘

X

i2P
zi�

a(xi), (3)

where zi are weights and xi 2 Rd. In the collider
physics context, zi are (normalized) particle energies and
xi = (yi, �i) are particle positions, and P is a probabil-
ity distribution of energy on detector space, or an energy
flow [43–47], over which we can take expectation values.2

Applying Eq. (3) to Eq. (1), we find:

O(P) = F

 
X

i2P
zi�

a(xi)

!
, (4)

which is how an EFN is typically written [34]. Note that
an ordinary Deep Sets network, as presented in Ref. [37],
is simply a special case of the EFN where zi = 1 for all
i.

Given that EFNs are functions F of the expectation
value of �a, it is natural to extend them to also include
higher-order moments of �a, arriving at the Moment En-
ergy Flow Network. More precisely, the Moment EFN
of Eq. (2) simply extends F from being a function of
only the expectation value of �a to a function of up to k
moments of �a, which reduces to the ordinary EFN for
k = 1. As an explicit example, the k = 2 Moment EFN
takes the form:

O2(P) = F (h�a
iP , h�a1�a2iP), (5)

where h�a1�a2i is the second moment of �, which is:

h�a1�a2iP =
X

i2P
zi�

a1(xi)�
a2(xi). (6)

2
To align with the notation of Ref. [47], we have h�aiP = hP, �ai.
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will be small. Using EFNs as a representative example,
we show how to train an IRC-safe neural network to be
maximally sensitive to non-perturbative hadronization,
thereby constructing an observable that is “safe but in-
calculable”.3 As a step towards restoring calculablity,
we introduce Lipschitz Energy Flow Networks (L-EFNs),
whose bounded gradients ensure bounded sensitivity to
non-perturbative corrections.

The fact that IRC-safe observables can have cross sec-
tions with large non-perturbative corrections is not new,
even if it may not be widely appreciated. The stan-
dard (but misleading) lore is that IRC-safe observables
should have non-perturbative corrections that are power-
suppressed as (⇤QCD/E)n, where ⇤QCD is the QCD con-
finement scale, E is the energy scale of the process in
consideration, and n is some integer power (typically 1 or
2). Already, though, it is known that jet angularities [34–
37] with angular exponent � . 1 have non-perturbative
corrections with n = � scaling [8, 19, 38], which turns
into O(1) e↵ects as � ! 0. Because there is no general
first-principles understanding of non-perturbative QCD
e↵ects, then the cross section is essentially incalculable
(or at least untrustable) if these corrections grow large.

In the context of IRC-safe ML models, we are not
aware of any previous studies of the general impact
of non-perturbative e↵ects. Here, to identify ML ob-
servables with maximal non-perturbative sensitivity, we
train an IRC-safe classifier to distinguish parton-level
from hadron-level events. Classifiers whose cross sec-
tions have controlled non-perturbative corrections should
be unable to distinguish between these samples. In-
stead, we find that EFNs are highly e↵ective at parton-
level versus hadron-level classification, implying large
non-perturbative sensitivity. Our new L-EFN architec-
ture reduces this sensitivity by imposing spectral nor-
malization [39, 40], which is equivalent to bounding
the Lipschitz norm of the network (see related work
in Refs. [41, 42]). This approach is motivated by the
Kantorovich-Rubinstein duality theorem [43] and the En-
ergy Mover’s Distance (EMD) [44], which provides a ro-
bust way to estimate the size of non-perturbative e↵ects.

The remainder of this paper is organized as follows.
In Sec. II, we introduce L-EFNs and explain how the
Lipschitz constraint enforces an EMD bound on non-
perturbative corrections. We then perform a case study
in Sec. III to compare the hadronization sensitivity of
EFNs and L-EFNs. We investigate the learned latent
representations of (L-)EFNs in Sec. IV and conclude in
Sec. V. For completeness, we perform a quark/gluon dis-
crimination study in App. A.

3
The opposite case of “unsafe but calculable” observables can arise

in resummed perturbation theory, where there is no order-by-

order ↵s expansion but nevertheless non-perturbative corrections

are suppressed [19, 20].

II. METHODOLOGIES

A. Lipschitz Energy Flow Networks

The L-EFN architecture we propose in this work is
built on top of a standard EFN, which provides a generic
framework for learning IRC-safe observables. Given a jet
with constituent momenta p1, p2, . . . , pM , an EFN com-
putes a function of the form:

EFN({p1, . . . , pM}) = F

 
MX

i=1

zi�(p̂i)

!
, (1)

where zi = pT,i/pT,jet is the constituent momentum or
energy fraction and p̂i is the particle’s angular position
relative to the jet axis. The function � : R2

! R` maps
individual particles to a latent space of dimension `. The
function F : R`

! Rdout maps the latent representation
to the final output. In a standard EFN, the functions
� and F are unconstrained and typically implemented
as neural networks. The additive and energy-weighted
structure of an EFN guarantees a naturally permutation-
invariant and IRC safe output; see Ref. [28] for further
discussion.

An L-EFN extends the EFN setup by constraining �
and F to be L-Lipschitz, meaning that

k�(p̂1) � �(p̂2)k  Lkp̂1 � p̂2k,

kF (x1) � F (x2)k  Lkx1 � x2k.

This is e↵ectively a bound on the gradients of these func-
tions, though the Lipschitz constraint does not require �
and F to be everywhere di↵erentiable. In principle, one
could choose di↵erent L values for � and F , but we keep
them the same for simplicity of discussion.

If � and F are neural networks with L-Lipschitz ac-
tivations,4 this amounts to a constraint on the spectral
norm of their weight matrices W

i [39]:

�(W i) := max
h6=0

kW
ihk2

khk2
 L. (2)

This can be enforced during training by scaling the
weight matrices as W

i
! LW

i
/�(W i) using a compu-

tationally e�cient estimation of �(W i) [39]. We focus on
the L = 1 case throughout this paper, and L-EFN should
be henceforth understood as L = 1.

For the studies in Sec. III B we use the base ar-
chitectures from the EnergyFlow package [27, 28],
implemented and trained using TensorFlow [45],
Keras [46], and Adam [47]. To enforce the 1-Lipschitz
constraint when training L-EFNs, we replace all linear
Dense layers in the networks with SpectralDense lay-
ers from the deel-lip package [48]. Unless otherwise

4
Many standard activation functions are 1-Lipschitz, such as

ReLU, LeakyReLU, and Sigmoid.
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e↵ects, then the cross section is essentially incalculable
(or at least untrustable) if these corrections grow large.

In the context of IRC-safe ML models, we are not
aware of any previous studies of the general impact
of non-perturbative e↵ects. Here, to identify ML ob-
servables with maximal non-perturbative sensitivity, we
train an IRC-safe classifier to distinguish parton-level
from hadron-level events. Classifiers whose cross sec-
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be unable to distinguish between these samples. In-
stead, we find that EFNs are highly e↵ective at parton-
level versus hadron-level classification, implying large
non-perturbative sensitivity. Our new L-EFN architec-
ture reduces this sensitivity by imposing spectral nor-
malization [39, 40], which is equivalent to bounding
the Lipschitz norm of the network (see related work
in Refs. [41, 42]). This approach is motivated by the
Kantorovich-Rubinstein duality theorem [43] and the En-
ergy Mover’s Distance (EMD) [44], which provides a ro-
bust way to estimate the size of non-perturbative e↵ects.

The remainder of this paper is organized as follows.
In Sec. II, we introduce L-EFNs and explain how the
Lipschitz constraint enforces an EMD bound on non-
perturbative corrections. We then perform a case study
in Sec. III to compare the hadronization sensitivity of
EFNs and L-EFNs. We investigate the learned latent
representations of (L-)EFNs in Sec. IV and conclude in
Sec. V. For completeness, we perform a quark/gluon dis-
crimination study in App. A.
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built on top of a standard EFN, which provides a generic
framework for learning IRC-safe observables. Given a jet
with constituent momenta p1, p2, . . . , pM , an EFN com-
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function F : R`
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This is e↵ectively a bound on the gradients of these func-
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and F to be everywhere di↵erentiable. In principle, one
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tivations,4 this amounts to a constraint on the spectral
norm of their weight matrices W

i [39]:

�(W i) := max
h6=0

kW
ihk2

khk2
 L. (2)
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implemented and trained using TensorFlow [45],
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FIG. 1. Schematic of the black-box guided search in Sec. II B. In each iteration of this strategy, the relative decision ordering of
signal/background pairs between the fixed black-box network (BBN, black triangle) and a trainable network of HL observables
(HLN, white triangle) is used to identify the subset (red box) in which pairs are di↵erently ordered. From a large space of HL
observables (circles), the one with the largest ADO in the misordered space (blue circle) is selected for the next iteration. The
schematic above corresponds to the n = 4 iteration. Note that the BBN is not retrained in each iteration, but the network of
HL observables is.

These steps are repeated until ADO[BBN,HLNn+1] gets
as close to 1 as desired.
Isolating the di↵erently-classified pairs in Eq. (8) is

similar in spirit to the boosting step of BDTs [69, 70].
This approach focuses attention only on the subspace
of pairs where the BBN disagrees with the current set
of HL observables, allowing us to identify new HL ob-
servables that make signal-background ordering decisions
most similar to the BBN in that subspace. It is worth
emphasizing that the ADO, or some other metric for net-
work decision similarity, is essential for this approach to
work.
Later in Sec. VC, we will compare this black-box

guided approach to a label guided approach. Instead
of using the ADO, the label guided approach uses the
AUC with respect to ground truth information. It is
straightforward to understand why the ADO is superior
to the AUC for guiding purposes. To the extent that the
BBN is well trained, it represents a good approximation
to the Neyman–Pearson optimal classifier. Achieving the
correct DO relative to the optimal classifier for every sig-
nal/background training pair is the best one could ever
hope to do. Therefore, if the black-box guiding strategy
is working correctly, then the subsets Xn will get smaller
and smaller until almost all signal/background pairs have
been correctly ordered relative to the BBN.
By contrast, the AUC captures DO relative to truth

labels. Unless the BBN is able to achieve AUC = 1, there
will inevitably be signal/background pairs that are incor-

rectly ordered even by the theoretically optimal classifier.
Instead of getting smaller and smaller, the subsets Xn

will stall at the set of signal/background pairs that can
never be ordered correctly. This in turn means that the
classification performance of HLNn will stall well below
the theoretical maximum in the label guided approach.
That is why we advocate for the selection of HL observ-
ables to be guided by the ADO, since then the classifi-
cation performance of the HLNn will eventually match
that of the BBN, as desired.
As with any “greedy algorithm”, our black-box guided

strategy cannot identify situations where two HL observ-
ables could be combined simultaneously to match the
BBN decision surfaces. This means that we might miss
sets of observables that are individually poor classifiers
but perform well jointly. If the goal were to just to max-
imize performance, this would be an undesirable feature.
In the context of mapping a black-box ML strategy to
a physically-interpretable space, though, we are indeed
looking for individual observables with high information
content relevant for classification, so this greedy strategy
is the one most likely to yield physical insight.

III. A CASE STUDY IN JET SUBSTRUCTURE

We now apply the technique introduced in Sec. II to
a specific case study involving jet classification at the
LHC. In this section, we review boosted W boson clas-

[Faucett, JDT, Whiteson, PRD 2021;
using Komiske, Metodiev, JDT, JHEP 2018; C3 from Larkoski, Salam, JDT, JHEP 2013]
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Iteration (n) EFP  � Chrom # ADO[EFP,CNN]Xn�1 AUC[EFP] ADO[HLNn,CNN]Xall AUC[HLNn]

0 Mjet + pT – – – – – 0.9259 0.9119

1 2 1
2 2 0.8144 0.8190 0.9570 0.9382

2 0 2 2 0.6377 0.8106 0.9673 0.9458

3 0 – 1 0.5460 0.6737 0.9692 0.9476

4 1 1
2 2 0.5274 0.8464 0.9712 0.9487

5 �1 – 1 0.5450 0.5882 0.9714 0.9504

6 1 1
2 4 0.5382 0.7678 0.9734 0.9523

7 �1 1
2 2 0.5561 0.5957 0.9741 0.9528

TABLE III. The EFPs selected during each iteration of the black-box guiding strategy beginning from HLN0, which uses just
pT and Mjet. For each iteration, the selected EFP is the one with the largest ADO with the CNN in the di↵erently-ordered
subspace Xn�1.

where 1 corresponds to f correctly ordering the points
and 0 corresponds to inverted ordering. Starting again
from the jet pT and Mjet information, we identify the
subset of event pairs that are incorrectly ordered:

Y0 =
n
(x, x0)

���TO
⇥
HLN0

⇤
(x, x0) = 0

o
. (36)

In each iteration, we find the EFP that has the highest
AUC in the incorrectly-ordered subspace,

EFPn = argmax
EFP2S

AUC[EFP]Yn�1 , (37)

construct a new joint classifier HLNn ⌘ HLN0 + nEFP,
and identify the next incorrectly-ordered subset of events:

Yn =
n
(x, x0)

���TO[HLNn](x, x
0) = 0

o
. (38)

Note that this procedure is completely independent of
the CNN.

The results from this truth-label guided procedure are
shown in in Fig. 5 in terms of the AUC and ADO. In
the first iteration, the classification performance is bet-
ter than in the black-box guided search, which makes
sense since the label guided method is trying to optimize
AUC directly. After 7 iterations, though, the classifica-
tion performance never rises above AUC = 0.951. As
mentioned in Sec. II B, isolating the incorrectly-ordered
pairs turns out to be counter productive, since some of
these pairs could never be ordered correctly even by the
optimal classifier. This emphasizes the value of using
the ADO relative to an already-trained network, to make
sure attention is focused on event pairs that have a chance
to be correctly ordered.

D. Physics Interpretation

By translating the CNN into a space of physically-
motivated observables, we can gain physical insight into
the observables used in the classification decision. In
particular, the first few observables in Table III give us
a glimpse at a possible alternative history for the field
of jet substructure, if combinations like C2 and D2 had
not been previously identified. Distributions of the EFPs
found in the first four iterations are shown in Fig. 7.

After pT and Mjet, the first EFP selected by the black-
box guided strategy is:

⇣
=2,�=

1

2

⌘

. (39)

The fact that a  = 2 observable shows up early in the
iterative procedure bolsters the evidence from Sec. IVA
that these kinds of observables are important for mapping
the CNN strategy. This is a chromatic number c = 2
graph, so just like jet mass, it probes deviations from 1-
prong substructure. However, it uses a 5-point correlator
(unlike mass which is a 2-point correlator) and it uses the
� = 1

2
angular exponent (unlike mass which uses � = 2).

Putting these together, Eq. (39) is an IRC-unsafe probe
of hard, small-angle radiation.

The second EFP is also IRC unsafe and also corre-
sponds to a c = 2 graph:

(=0,�=2). (40)

Here, though, we have  = 0 and � = 2, which is a probe
of soft, wide-angle radiation. It is interesting that the
black-box guided strategy selects these two complemen-
tary c = 2 observables in the first two iterations, indicat-
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FIG. 5. Performance of the black-box guided search strategy
to map the CNN solution into human-interpretable observ-
ables. Here, we start from just the basic jet features pT and
Mjet and iteratively add one EFP at a time. The performance
is shown in terms of AUC (top) and ADO (bottom) as a func-
tion of the scan number. The performance of a brute-force
scan of the EFP space (Sec. VB) and a truth-label guided
search (Sec. VC) are also shown. For reference, the per-
formance of the CNN and of the existing 6HL features are
indicated by horizontal lines.

W boson mass peak, and either pT or Mjet would su�ce
for this purpose.

We begin from both pT and Mjet for two reasons. The
first is that they are ubiquitous jet observables appearing
in myriad collider studies. The second is to streamline
the selection of EFPs. Naively, Mjet could be derived
from pT using the EFP in Eq. (15) with  = 1 and � = 2:

(=1,�=2) ⇡
M2

jet

p2
T

. (26)

With the choice of ✓a variable in Eq. (15), though,
Eq. (26) is only approximately true, so multiple EFPs
are needed to map out the mass information if pT is the
only dimensionful scale. We checked that the black-box
strategy is still e↵ective starting from just pT or from just
Mjet, but the chosen EFPs tend to be more mass-like in
their structure. By contrast, starting from both pT and
Mjet yields more variation in the types of EFPs selected.
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This yields an AUC of 0.9119, which is substantially be-
low the CNN performance for boosted W boson tagging.
We then restrict our attention to the subset of events that
are di↵erently ordered by these minimal features relative
to the CNN:

X0 =
n
(x, x0)

���DO
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CNN,HLN0

⇤
(x, x0) = 0

o
. (28)

The ADO between the CNN and HLN0 is 0.9150, so X0

contains 8.5% of the original Xall sample, though we only
consider a random subset of 5⇥107 pairs in X0 to reduce
the computational burden. Our aim is to find a set of
EFPs that can order these signal and background events
the same as the CNN decision boundaries.

To identify the n-th EFP, we use the black-box guided
strategy of Sec. II B, adapted to the current notation:
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EFP2S

ADO[CNN,EFP]Xn�1 . (29)

We construct a new joint classifier that includes this
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This allows us to identify the remaining di↵erently-
ordered subset of events:

Xn =
n
(x, x0)

���DO[CNN,HLNn](x, x
0) = 0

o
, (31)
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FIG. 5. Performance of the black-box guided search strategy
to map the CNN solution into human-interpretable observ-
ables. Here, we start from just the basic jet features pT and
Mjet and iteratively add one EFP at a time. The performance
is shown in terms of AUC (top) and ADO (bottom) as a func-
tion of the scan number. The performance of a brute-force
scan of the EFP space (Sec. VB) and a truth-label guided
search (Sec. VC) are also shown. For reference, the per-
formance of the CNN and of the existing 6HL features are
indicated by horizontal lines.
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FIG. 7. The first four EFP graphs selected by the black-
box guided strategy beginning from the minimal set of HL
observables, pT and Mjet; see Table III. Shown are the EFP
distributions for signal and background events, both in the
full set of events Xall (left column) and in Xn (right column),
i.e. the di↵erently ordered space between the HLNn and the
CNN after n iterations.

ing the importance of 1-prong substructure probes even
if the goal is to identify 2-prong boosted W bosons.

The third EFP is constituent multiplicity, as seen be-
fore in Eq. (25), which reinforces the idea that controlling
the composition of the quark/gluon background is impor-
tant for W tagging. These three observables, together
with pT and Mjet, yield an AUC of 0.9476. This is not
as good as the 6HL combination, but still quite encour-
aging given that we did not give the black-box guided
strategy any information about the ratio structures used
to construct C2 and D2.

The main surprise from this study is that IRC-safe
information was not selected by the black-box guided

search until the fourth iteration:

(=1,�= 1
2 ). (41)

Moreover, it is a c = 2 graph, so still a probe of 1-prong
substructure. Only in interaction six do we finally see a
higher chromatic number graph, but the guided search
skips over the C2/D2-like graphs with c = 3 and goes
straight to c = 4. The black-box guided strategy has
identified a very di↵erent strategy for boosted W boson
tagging that nevertheless matches the 6HL combination
with a comparable number of observables.
One interpretation of this result is that it simply re-

flects the “entropy” of our HL space. There are 4 times as
many IRC-unsafe observables in our HL collection than
IRC-safe ones, so just by random chance, one expects to
see more unsafe observables in the scan. Indeed, there
are IRC-safe observables that are highly ranked in the
first three iterations, just not at the top of the list. An-
other interpretation is that the black-box guided strategy
is teaching us that IRC-unsafe information is more rele-
vant for boostedW tagging than one might naively think.
A related observation was made in Ref. [85], which in-
troduced a color ring observable to identify color-singlet
configurations. Intriguingly, when restricted to three par-
ticles, the angular structure of Eq. (39) defines similar
decision boundaries to the color ring.6 Either way, by
searching through a large space of HL observables in a
systematic way, the black-box guided strategy has given
us a new perspective on an old problem in a human-
readable format.

VI. DISCUSSION

The ever increasing complexity of new ML strategies
has produced better classification performance for vari-
ous physics problems. At the same time, the increasing
opaqueness of these methods has widened the gap be-
tween our understanding of a problem and our apprecia-
tion of the ML solution. In this paper, we have proposed
a new technique for mapping an ML solution into a space
of human-interpretable observables. Our guided strate-
gies mitigate some of the well-founded concerns about
black-box approaches, while still allowing us to capital-
ize on the black-box performance to e�ciently guide the
selections of HL observables. The end result is a set of
HL observables that have a more direct physical inter-
pretation and allow for a more transparent treatment of
systematic uncertainties.
In our jet substructure case study, we have shown that

the black-box guided strategy could be used to isolate in-
formation that is not captured by previous HL represen-
tations. Remarkably, only a single observable was needed

6 We thank Andrew Larkoski for discussions of this point.
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representation, which converts the latent representation
into the observable O. The Deep Sets theorem, as dis-
cussed in Refs. [34, 37], guarantees that any (infrared and
collinear (IRC)-safe) observable can be approximated ar-
bitrarily well for a su�ciently expressive F and �, and
large enough L. However, the theorem makes no guar-
antees on the complexity of � or F , and may require a
very large L.

In this paper, we introduce Moment Pooling, a natu-
ral extension of Deep Sets architectures that significantly
reduces the number of latent dimensions L needed while
maintaining or improving its performance. The Moment
Pooling operation generalizes the expectation value of �
in Eq. (1) to higher order multivariate moments:

Ok(P) ⌘ F
�
h�a

iP , h�a1�a2iP , ... h�a1 ...�akiP
�
, (2)

where k is the highest order moment considered. This
procedure is inspired by histogram pooling [38], in which
the � are histograms binned in x. We focus primarily on
applying Moment Pooling to EFNs in the collider physics
context, where Eq. (2) defines an order k Moment EFN,
which reduces to the ordinary EFN when k = 1. Alterna-
tive modifications of EFNs are discussed in Refs. [39, 40].

We show that for k > 1, a Moment EFN enables the
same or better performance on quark/gluon jet classifica-
tion as an EFN, but with a much smaller latent dimen-
sion L, allowing the same machine-learned observables
to be constructed using fewer base functions. With fewer
latent dimensions, it is much easier to directly visualize
the model’s internal representations and therefore eas-
ier to directly interpret and find closed-form expressions
for the learned observable. As a concrete example, an
order k = 4 Moment EFN with a single latent dimen-
sion achieves comparable performance on quark/gluon
jet classification to an ordinary EFN with 4 latent di-
mensions. We are able to directly plot this latent dimen-
sion and find that it takes a remarkably simple closed
form, the “log angularity” observable, which bears many
similarities to jet angularities [41, 42].

The rest of the paper is organized as follows: In Sec. II,
we give an overview of moment pooling and the Moment
EFN architecture, show how it naturally arises as a gener-
alization of Deep Sets, and introduce the idea of e↵ective
latent dimensions. In Sec. III, we demonstrate how the
Moment EFN may be used for quark/gluon discrimina-
tion, and how Moment EFNs outperform ordinary EFNs
as L and k are varied. In Sec. IV, we analyze the la-
tent spaces of small-L Moment EFNs and attempt to
understand them in terms of simple closed-form fits, al-
lowing for analytic observables to be extracted from the
model. Finally, in Sec. V, we present our conclusions
and outlook. Implementation details of the architecture
may be found in App. A. An additional study involving
regression on jet angularities, rather than classification,
using Moment EFNs may be found in App. B. Additional
studies complementing Sec. III, involving top/QCD dis-
crimination and Moment Particle Flow Networks (PFNs)
rather than EFNs, may be found in App. C.

II. MOMENT POOLING

We begin with the construction of the Moment Pool-
ing operation. We first define Moment Pooling as an
extension of Deep Sets and apply it to EFNs, a form
of weighted Deep Sets, to produce Moment EFNs in
Sec. IIA. Then, in Sec. II B, we discuss how Moment
Pooling is capable of reducing the latent dimension of
EFNs through the concept of e↵ective latent dimensions.

A. The Moment Energy Flow Network

The Moment Pooling operation, as given by Eq. (2),
is a generalization of Deep Sets-style architectures. The
form of Eq. (2) is motivated by the observation that the
summation step over the latent representation �a in Deep
Sets architectures, generalized to weighted sums in EFNs,
can be regarded as taking an expectation value of the L-
dimensional random variable �a(x) defined over a base
space Rd, taken over P:

h�a
iP ⌘

X

i2P
zi�

a(xi), (3)

where zi are weights and xi 2 Rd. In the collider
physics context, zi are (normalized) particle energies and
xi = (yi, �i) are particle positions, and P is a probabil-
ity distribution of energy on detector space, or an energy
flow [43–47], over which we can take expectation values.2

Applying Eq. (3) to Eq. (1), we find:

O(P) = F

 
X

i2P
zi�

a(xi)

!
, (4)

which is how an EFN is typically written [34]. Note that
an ordinary Deep Sets network, as presented in Ref. [37],
is simply a special case of the EFN where zi = 1 for all
i.

Given that EFNs are functions F of the expectation
value of �a, it is natural to extend them to also include
higher-order moments of �a, arriving at the Moment En-
ergy Flow Network. More precisely, the Moment EFN
of Eq. (2) simply extends F from being a function of
only the expectation value of �a to a function of up to k
moments of �a, which reduces to the ordinary EFN for
k = 1. As an explicit example, the k = 2 Moment EFN
takes the form:

O2(P) = F (h�a
iP , h�a1�a2iP), (5)

where h�a1�a2i is the second moment of �, which is:

h�a1�a2iP =
X

i2P
zi�

a1(xi)�
a2(xi). (6)

2
To align with the notation of Ref. [47], we have h�aiP = hP, �ai.
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Combining per-particle features through
multiplication and summation

Moment Pooling
(k = 2)

Sum Pooling
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Single learned feature with k = 4
mimics four separate learned features
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p
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FIG. 3. A radial slice of the latent space for the best perform-
ing k = 4, L = 1 Moment EFN, as a function of rapidity (y).
The radial slice is taken at an azimuthal angle of zero. The
latent space is shown as a dark blue line, and the logarithmic
fit from Eq. (12) is shown as a blue dashed line.

radial profile is largely the same up to normalization on
any projection not along the mirror symmetry axis. Mo-
tivated by the form of the radial profile in Fig. 3, we fit
the function:

�L(r) = c1 + c2 log(c3 + r), (12)

where r is the radial distance in the rapdity-azimuth
plane from (0, 0), as defined by the energy-weighted av-
erage position of the jet.

This function provides an excellent fit to the latent
function with c1 = �3.584, c2 = �0.847, and c3 = 0.005.
The values of c1 and c2 are largely unimportant, since
they will be subject to a�ne transformations within the
first layer of the F network, and these parameters vary
significantly across retrainings. On the other hand, c3 is
consistently a small number in the range of 0.002 to 0.01,
and is embedded in a logarithm which is more nontrivial
for F to unravel.

The function �L has a divergence as r ! 0 (i.e. as par-
ticles become collinear with the jet center), but this di-
vergence is regulated by the c3 parameter. Interestingly,
c3 is within an O(1) factor of ⇤QCD

pT R ⇠ 0.001, suggesting
that the nonzero value of c3 is due to genuine nonpertur-
bative physics near the jet core learned by the Moment
EFN.

The moments of the function �L can be used to con-
struct jet shape observables of the form:

L
(n)(P) = h�n

LiP ,

=
X

i2P
zi (c1 + c2 log(c3 + ri))

n . (13)

We call the observables L
(n) log angularities, since they

resemble ordinary jet angularities ��(P) =
P

i2P zir
�
i for

c1 = c2 = 0. It is possible to generically set c1 = c2 = 0
by taking linear combinations of L

(n) for di↵erent n,
but we elect to keep these parameters as it reduces the
amount of total linear transformations our 3 hidden-layer
dense networks have to do. These log angularities are in-
teresting observables in their own right, especially in the
c3 ! 0 limit and are closely related to the � ! 0 limit of
ordinary angularities [40, 76], though we save a more in-
depth theoretical discussion of log angularities for future
work and here focus on their use as quark/gluon taggers.

We can use these analytic observables as inputs to a
simple dense neural network classifier of the form:

F (k)(L(1), ..., L(k)). (14)

If the k = 4 dense neural net classifier has the same
performance as the full order k = 4 Moment EFN, then
we can claim not only to have found a fully analytic form
of the k = 4 latent space, but equivalently to have found
a fully analytic form of the four di↵erent L = 4 ordinary
EFN latent space dimensions.

In Fig. 4, we show ROC curves7 of the classifier defined
by Eq. (14) for k = 1 through 4. The F networks used
here have precisely the same architecture and training
procedure as those used for the Moment EFNs in Sec. III,
described in App. A. These results are also summarized
in Table II. We also show, in purple, the k = 4 DNN
classifier taking c3 to 0. From this plot, we can make
several observations:

1. The k = 4 dense model is as good as the k = 4
Moment EFN: We can replace the neural network
latent dimension �(x) with the much simpler �L(r)
when L = 1. Moreover, since the k = 4, L = 1 Mo-
ment EFN is just as good as the L = 4 ordinary
EFN, the single function �L(r) and its powers cap-
tures the same information as 4 dimensions worth
of latent space in an ordinary EFN.

2. The k = 1, 2, and 3 dense models are not

as good as their corresponding order k Mo-

ment EFNs: The AUCs of the dense models are
slightly lower than the corresponding L = 1 Mo-
ment EFNs in Table I for k < 4. This suggests
that while the combination of L

(1), L(2), L(3), L(4)

are optimal, individually they are not, and L
(1) by

itself is not the most optimal single-variable observ-
able for IRC-safe quark/gluon discrimination.

3. The c3 parameter matters: Taking the parame-
ter c3 to zero reduces the AUC of the k = 4 models

7
The Receiver Operating Characteristic (ROC) curve of a clas-

sifier quantifies the background rejection rate as a function of

the signal acceptance rate, and is given by ROC(�) = 1 �
Pg(P�1

q (�)).
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FIG. 5. The distribution of the dense neural network output (a) F (1), (b) F (2), and (c) F (3) as a function of the first, first two,
and first three (cumulant) log angularities respectively. The true quark/gluon label for several jets are indicated with colored
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Model AUC 1/✏g at ✏q = 0.3 1/✏g at ✏q = 0.5 Trainable Parameters

k = 1 Log Angularity Closed Form 0.725 ± 0.001 36.2 ± 0.2 7.0 ± 0.0 3 + 1

k = 2 Log Angularity Closed Form 0.780 ± 0.002 57.4 ± 0.2 10.6 ± 0.1 3 + 3

k = 3 Log Angularity Closed Form 0.781 ± 0.002 57.8 ± 2.8 12.1 ± 0.1 3 + 5

k = 4 Log Angularity Closed Form 0.793 ± 0.002 54.6 ± 1.7 12.7 ± 0.4 3 + 7

TABLE III. The same as Table I, but with the closed-form expressions defined in Eq. (19). The “3+” in the trainable parameters
column refers to the parameters in the log angularity fit.
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radial profile is largely the same up to normalization on
any projection not along the mirror symmetry axis. Mo-
tivated by the form of the radial profile in Fig. 3, we fit
the function:

�L(r) = c1 + c2 log(c3 + r), (12)

where r is the radial distance in the rapdity-azimuth
plane from (0, 0), as defined by the energy-weighted av-
erage position of the jet.

This function provides an excellent fit to the latent
function with c1 = �3.584, c2 = �0.847, and c3 = 0.005.
The values of c1 and c2 are largely unimportant, since
they will be subject to a�ne transformations within the
first layer of the F network, and these parameters vary
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and is embedded in a logarithm which is more nontrivial
for F to unravel.

The function �L has a divergence as r ! 0 (i.e. as par-
ticles become collinear with the jet center), but this di-
vergence is regulated by the c3 parameter. Interestingly,
c3 is within an O(1) factor of ⇤QCD

pT R ⇠ 0.001, suggesting
that the nonzero value of c3 is due to genuine nonpertur-
bative physics near the jet core learned by the Moment
EFN.

The moments of the function �L can be used to con-
struct jet shape observables of the form:

L
(n)(P) = h�n

LiP ,

=
X

i2P
zi (c1 + c2 log(c3 + ri))

n . (13)

We call the observables L
(n) log angularities, since they

resemble ordinary jet angularities ��(P) =
P

i2P zir
�
i for

c1 = c2 = 0. It is possible to generically set c1 = c2 = 0
by taking linear combinations of L

(n) for di↵erent n,
but we elect to keep these parameters as it reduces the
amount of total linear transformations our 3 hidden-layer
dense networks have to do. These log angularities are in-
teresting observables in their own right, especially in the
c3 ! 0 limit and are closely related to the � ! 0 limit of
ordinary angularities [40, 76], though we save a more in-
depth theoretical discussion of log angularities for future
work and here focus on their use as quark/gluon taggers.

We can use these analytic observables as inputs to a
simple dense neural network classifier of the form:

F (k)(L(1), ..., L(k)). (14)

If the k = 4 dense neural net classifier has the same
performance as the full order k = 4 Moment EFN, then
we can claim not only to have found a fully analytic form
of the k = 4 latent space, but equivalently to have found
a fully analytic form of the four di↵erent L = 4 ordinary
EFN latent space dimensions.

In Fig. 4, we show ROC curves7 of the classifier defined
by Eq. (14) for k = 1 through 4. The F networks used
here have precisely the same architecture and training
procedure as those used for the Moment EFNs in Sec. III,
described in App. A. These results are also summarized
in Table II. We also show, in purple, the k = 4 DNN
classifier taking c3 to 0. From this plot, we can make
several observations:

1. The k = 4 dense model is as good as the k = 4
Moment EFN: We can replace the neural network
latent dimension �(x) with the much simpler �L(r)
when L = 1. Moreover, since the k = 4, L = 1 Mo-
ment EFN is just as good as the L = 4 ordinary
EFN, the single function �L(r) and its powers cap-
tures the same information as 4 dimensions worth
of latent space in an ordinary EFN.

2. The k = 1, 2, and 3 dense models are not

as good as their corresponding order k Mo-

ment EFNs: The AUCs of the dense models are
slightly lower than the corresponding L = 1 Mo-
ment EFNs in Table I for k < 4. This suggests
that while the combination of L

(1), L(2), L(3), L(4)

are optimal, individually they are not, and L
(1) by

itself is not the most optimal single-variable observ-
able for IRC-safe quark/gluon discrimination.

3. The c3 parameter matters: Taking the parame-
ter c3 to zero reduces the AUC of the k = 4 models

7
The Receiver Operating Characteristic (ROC) curve of a clas-

sifier quantifies the background rejection rate as a function of

the signal acceptance rate, and is given by ROC(�) = 1 �
Pg(P�1

q (�)).

Log Angularity through
Symbolic ReGression:

Same philosophy (and scaling) as Energy Flow Networks,
just new permutation-invariant pooling operations

[Gambhir, Osathapan, JDT, arXiv 2024; building off Komiske, Metodiev, JDT, JHEP 2019; 
see also Cranmer, Kreisch, Pisani, Villaescusa-Navarro, Spergel, Ho, ICLR 2021 SimDL]

https://arxiv.org/abs/2403.08854
https://arxiv.org/abs/1810.05165
https://simdl.github.io/files/40.pdf
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see also Komiske, Metodiev, JDT, PRL 2019; Kitouni, Nolte, Williams, MLST 2023]
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that balances these considerations. The non-Lipschitz
networks trained to distinguish parton and hadron jets
may also be useful to explore the impact of hadronization
where it is predicted to be the largest. For non-IRC-safe
networks, our studies did not reveal dramatic di↵erences
between PFNs and L-PFNs, but the flexibility to adjust
L may be beneficial for ablation studies.

With a growing trend to build robust and interpretable
neural networks that are structured with particle physics
in mind, it is important to be guided by both formal
and practical considerations. Finding a balance between
neat theoretical constraints and performance demands is
inevitably delicate, but L-EFNs present a concrete step
towards uniting the power of deep learning with a rea-
soned caution against learning spurious or unphysical de-
tails of a simulation. We look forward to continued inves-
tigation and development in future work, and hope to see
the ongoing development of new machine learning tools
alongside theoretical tools to better understand them.
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FIG. 4. Two dimensional distributions of the parton-hadron EMD versus the di↵erence in observables at parton- and hadron-
level. Shown are results for (left column) the � = 1 angularity �

(1), (middle column) an EFN, (right column) an L-EFN,
separately for (top row) quark jets and (bottom row) gluon jets. The EMD is computed using momentum fractions zi in
keeping with the �

(1)/EFN/L-EFN calculations, and is thus dimensionless.

IV. VISUALIZING NON-PERTURBATIVE
EFFECTS

The above case study demonstrates that IRC safety
is insu�cient to protect against large non-perturbative
modifications, but it gives no immediate insight into
which observables are most susceptible. In this section,
we take a step towards answering this question by train-
ing EFNs with a minimal latent dimension size of ` = 1.
This corresponds to a single learned filter �(⌘, �) which
can be easily visualized, and a simple one-dimensional
classification function F .

As in Sec. III B, we train ` = 1 EFNs and L-EFNs to
discriminate parton- and hadron-level jets, treating the
quark and gluon samples separately. Perhaps surpris-
ingly, the ` = 1 EFNs are still able to achieve AUCs of
0.90 (quarks) and 0.91 (gluons), compared to 0.96 for
the full ` = 60 models in Sec. III B. The ` = 1 L-EFNs
perform similarly well, with AUCs of 0.54 and 0.53, com-
pared to 0.55 and 0.54 previously. We therefore conclude
that an ` = 1 analysis is su�cient to capture the leading
sources of non-perturbative sensitivity.

In Fig. 5, we plot the filter profiles �(⌘, �) for the

` = 1 (L-)EFNs (left and middle columns) alongside their
angle-averaged radial profiles (right column). All filters
exhibit cylindrical symmetry, as expected since the gen-
erated samples are for unpolarized jets with no preferred
angular orientation. Interestingly, the EFN filters ap-
pears to be maximally sensitive to highly collinear radi-
ation. Despite the jet radius being R = 1.0, the EFN
filters peak within a radius of ⇠ 0.02, with a plateau go-
ing out to larger scales. The EFN filters also vanish at
the origin, reflecting the consistent presence of a particle
at R = 0 aligned with the WTA jet axis.7

The L-EFN filters, on the other hand, cannot vary so
rapidly near the origin due to the 1-Lipschitz constraint.
Thus, the L-EFN cannot be as sensitive to collinear radi-
ation, while simultaneously ignoring the central particle.

This di↵ering behavior of EFNs and L-EFN is con-
sistent with theoretical expectations about the non-

7
If angles are instead measured with respect to the standard

jet momentum axis, then the ` = 1 EFN filters often exhibit

anisotropic features.
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FIG. 4. Two dimensional distributions of the parton-hadron EMD versus the di↵erence in observables at parton- and hadron-
level. Shown are results for (left column) the � = 1 angularity �

(1), (middle column) an EFN, (right column) an L-EFN,
separately for (top row) quark jets and (bottom row) gluon jets. The EMD is computed using momentum fractions zi in
keeping with the �

(1)/EFN/L-EFN calculations, and is thus dimensionless.

IV. VISUALIZING NON-PERTURBATIVE
EFFECTS

The above case study demonstrates that IRC safety
is insu�cient to protect against large non-perturbative
modifications, but it gives no immediate insight into
which observables are most susceptible. In this section,
we take a step towards answering this question by train-
ing EFNs with a minimal latent dimension size of ` = 1.
This corresponds to a single learned filter �(⌘, �) which
can be easily visualized, and a simple one-dimensional
classification function F .

As in Sec. III B, we train ` = 1 EFNs and L-EFNs to
discriminate parton- and hadron-level jets, treating the
quark and gluon samples separately. Perhaps surpris-
ingly, the ` = 1 EFNs are still able to achieve AUCs of
0.90 (quarks) and 0.91 (gluons), compared to 0.96 for
the full ` = 60 models in Sec. III B. The ` = 1 L-EFNs
perform similarly well, with AUCs of 0.54 and 0.53, com-
pared to 0.55 and 0.54 previously. We therefore conclude
that an ` = 1 analysis is su�cient to capture the leading
sources of non-perturbative sensitivity.

In Fig. 5, we plot the filter profiles �(⌘, �) for the

` = 1 (L-)EFNs (left and middle columns) alongside their
angle-averaged radial profiles (right column). All filters
exhibit cylindrical symmetry, as expected since the gen-
erated samples are for unpolarized jets with no preferred
angular orientation. Interestingly, the EFN filters ap-
pears to be maximally sensitive to highly collinear radi-
ation. Despite the jet radius being R = 1.0, the EFN
filters peak within a radius of ⇠ 0.02, with a plateau go-
ing out to larger scales. The EFN filters also vanish at
the origin, reflecting the consistent presence of a particle
at R = 0 aligned with the WTA jet axis.7

The L-EFN filters, on the other hand, cannot vary so
rapidly near the origin due to the 1-Lipschitz constraint.
Thus, the L-EFN cannot be as sensitive to collinear radi-
ation, while simultaneously ignoring the central particle.

This di↵ering behavior of EFNs and L-EFN is con-
sistent with theoretical expectations about the non-

7
If angles are instead measured with respect to the standard

jet momentum axis, then the ` = 1 EFN filters often exhibit

anisotropic features.
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will be small. Using EFNs as a representative example,
we show how to train an IRC-safe neural network to be
maximally sensitive to non-perturbative hadronization,
thereby constructing an observable that is “safe but in-
calculable”.3 As a step towards restoring calculablity,
we introduce Lipschitz Energy Flow Networks (L-EFNs),
whose bounded gradients ensure bounded sensitivity to
non-perturbative corrections.

The fact that IRC-safe observables can have cross sec-
tions with large non-perturbative corrections is not new,
even if it may not be widely appreciated. The stan-
dard (but misleading) lore is that IRC-safe observables
should have non-perturbative corrections that are power-
suppressed as (⇤QCD/E)n, where ⇤QCD is the QCD con-
finement scale, E is the energy scale of the process in
consideration, and n is some integer power (typically 1 or
2). Already, though, it is known that jet angularities [34–
37] with angular exponent � . 1 have non-perturbative
corrections with n = � scaling [8, 19, 38], which turns
into O(1) e↵ects as � ! 0. Because there is no general
first-principles understanding of non-perturbative QCD
e↵ects, then the cross section is essentially incalculable
(or at least untrustable) if these corrections grow large.

In the context of IRC-safe ML models, we are not
aware of any previous studies of the general impact
of non-perturbative e↵ects. Here, to identify ML ob-
servables with maximal non-perturbative sensitivity, we
train an IRC-safe classifier to distinguish parton-level
from hadron-level events. Classifiers whose cross sec-
tions have controlled non-perturbative corrections should
be unable to distinguish between these samples. In-
stead, we find that EFNs are highly e↵ective at parton-
level versus hadron-level classification, implying large
non-perturbative sensitivity. Our new L-EFN architec-
ture reduces this sensitivity by imposing spectral nor-
malization [39, 40], which is equivalent to bounding
the Lipschitz norm of the network (see related work
in Refs. [41, 42]). This approach is motivated by the
Kantorovich-Rubinstein duality theorem [43] and the En-
ergy Mover’s Distance (EMD) [44], which provides a ro-
bust way to estimate the size of non-perturbative e↵ects.

The remainder of this paper is organized as follows.
In Sec. II, we introduce L-EFNs and explain how the
Lipschitz constraint enforces an EMD bound on non-
perturbative corrections. We then perform a case study
in Sec. III to compare the hadronization sensitivity of
EFNs and L-EFNs. We investigate the learned latent
representations of (L-)EFNs in Sec. IV and conclude in
Sec. V. For completeness, we perform a quark/gluon dis-
crimination study in App. A.

3
The opposite case of “unsafe but calculable” observables can arise

in resummed perturbation theory, where there is no order-by-

order ↵s expansion but nevertheless non-perturbative corrections

are suppressed [19, 20].

II. METHODOLOGIES

A. Lipschitz Energy Flow Networks

The L-EFN architecture we propose in this work is
built on top of a standard EFN, which provides a generic
framework for learning IRC-safe observables. Given a jet
with constituent momenta p1, p2, . . . , pM , an EFN com-
putes a function of the form:

EFN({p1, . . . , pM}) = F

 
MX

i=1

zi�(p̂i)

!
, (1)

where zi = pT,i/pT,jet is the constituent momentum or
energy fraction and p̂i is the particle’s angular position
relative to the jet axis. The function � : R2

! R` maps
individual particles to a latent space of dimension `. The
function F : R`

! Rdout maps the latent representation
to the final output. In a standard EFN, the functions
� and F are unconstrained and typically implemented
as neural networks. The additive and energy-weighted
structure of an EFN guarantees a naturally permutation-
invariant and IRC safe output; see Ref. [28] for further
discussion.

An L-EFN extends the EFN setup by constraining �
and F to be L-Lipschitz, meaning that

k�(p̂1) � �(p̂2)k  Lkp̂1 � p̂2k,

kF (x1) � F (x2)k  Lkx1 � x2k.

This is e↵ectively a bound on the gradients of these func-
tions, though the Lipschitz constraint does not require �
and F to be everywhere di↵erentiable. In principle, one
could choose di↵erent L values for � and F , but we keep
them the same for simplicity of discussion.

If � and F are neural networks with L-Lipschitz ac-
tivations,4 this amounts to a constraint on the spectral
norm of their weight matrices W

i [39]:

�(W i) := max
h6=0

kW
ihk2

khk2
 L. (2)

This can be enforced during training by scaling the
weight matrices as W

i
! LW

i
/�(W i) using a compu-

tationally e�cient estimation of �(W i) [39]. We focus on
the L = 1 case throughout this paper, and L-EFN should
be henceforth understood as L = 1.

For the studies in Sec. III B we use the base ar-
chitectures from the EnergyFlow package [27, 28],
implemented and trained using TensorFlow [45],
Keras [46], and Adam [47]. To enforce the 1-Lipschitz
constraint when training L-EFNs, we replace all linear
Dense layers in the networks with SpectralDense lay-
ers from the deel-lip package [48]. Unless otherwise

4
Many standard activation functions are 1-Lipschitz, such as

ReLU, LeakyReLU, and Sigmoid.
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maximally sensitive to non-perturbative hadronization,
thereby constructing an observable that is “safe but in-
calculable”.3 As a step towards restoring calculablity,
we introduce Lipschitz Energy Flow Networks (L-EFNs),
whose bounded gradients ensure bounded sensitivity to
non-perturbative corrections.

The fact that IRC-safe observables can have cross sec-
tions with large non-perturbative corrections is not new,
even if it may not be widely appreciated. The stan-
dard (but misleading) lore is that IRC-safe observables
should have non-perturbative corrections that are power-
suppressed as (⇤QCD/E)n, where ⇤QCD is the QCD con-
finement scale, E is the energy scale of the process in
consideration, and n is some integer power (typically 1 or
2). Already, though, it is known that jet angularities [34–
37] with angular exponent � . 1 have non-perturbative
corrections with n = � scaling [8, 19, 38], which turns
into O(1) e↵ects as � ! 0. Because there is no general
first-principles understanding of non-perturbative QCD
e↵ects, then the cross section is essentially incalculable
(or at least untrustable) if these corrections grow large.

In the context of IRC-safe ML models, we are not
aware of any previous studies of the general impact
of non-perturbative e↵ects. Here, to identify ML ob-
servables with maximal non-perturbative sensitivity, we
train an IRC-safe classifier to distinguish parton-level
from hadron-level events. Classifiers whose cross sec-
tions have controlled non-perturbative corrections should
be unable to distinguish between these samples. In-
stead, we find that EFNs are highly e↵ective at parton-
level versus hadron-level classification, implying large
non-perturbative sensitivity. Our new L-EFN architec-
ture reduces this sensitivity by imposing spectral nor-
malization [39, 40], which is equivalent to bounding
the Lipschitz norm of the network (see related work
in Refs. [41, 42]). This approach is motivated by the
Kantorovich-Rubinstein duality theorem [43] and the En-
ergy Mover’s Distance (EMD) [44], which provides a ro-
bust way to estimate the size of non-perturbative e↵ects.

The remainder of this paper is organized as follows.
In Sec. II, we introduce L-EFNs and explain how the
Lipschitz constraint enforces an EMD bound on non-
perturbative corrections. We then perform a case study
in Sec. III to compare the hadronization sensitivity of
EFNs and L-EFNs. We investigate the learned latent
representations of (L-)EFNs in Sec. IV and conclude in
Sec. V. For completeness, we perform a quark/gluon dis-
crimination study in App. A.

3
The opposite case of “unsafe but calculable” observables can arise

in resummed perturbation theory, where there is no order-by-

order ↵s expansion but nevertheless non-perturbative corrections

are suppressed [19, 20].

II. METHODOLOGIES

A. Lipschitz Energy Flow Networks

The L-EFN architecture we propose in this work is
built on top of a standard EFN, which provides a generic
framework for learning IRC-safe observables. Given a jet
with constituent momenta p1, p2, . . . , pM , an EFN com-
putes a function of the form:
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and F to be everywhere di↵erentiable. In principle, one
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chitectures from the EnergyFlow package [27, 28],
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constraint when training L-EFNs, we replace all linear
Dense layers in the networks with SpectralDense lay-
ers from the deel-lip package [48]. Unless otherwise

4
Many standard activation functions are 1-Lipschitz, such as

ReLU, LeakyReLU, and Sigmoid.

https://arxiv.org/abs/2311.07652
https://arxiv.org/abs/1902.02346
https://arxiv.org/abs/2112.00038


To benefit from machine learning advances, we must ensure 
that our algorithmic choices align with our scientific goals

When possible, pursue active interpretability, where you 
control the network architecture and training paradigm

Foundation models identify generically useful features, 
which challenge the importance of task alignment

Confronting the Black Box

Case Study in Jet Classification

The Next Frontier for Interpretability

Jesse Thaler (MIT, IAIFI) — Interpretable Machine Learning for Particle Physics

14

Iteration (n) EFP  � Chrom # ADO[EFP,CNN]Xn�1 AUC[EFP] ADO[HLNn,CNN]Xall AUC[HLNn]

0 Mjet + pT – – – – – 0.9259 0.9119

1 2 1
2 2 0.8144 0.8190 0.9570 0.9382

2 0 2 2 0.6377 0.8106 0.9673 0.9458

3 0 – 1 0.5460 0.6737 0.9692 0.9476

4 1 1
2 2 0.5274 0.8464 0.9712 0.9487

5 �1 – 1 0.5450 0.5882 0.9714 0.9504

6 1 1
2 4 0.5382 0.7678 0.9734 0.9523

7 �1 1
2 2 0.5561 0.5957 0.9741 0.9528

TABLE III. The EFPs selected during each iteration of the black-box guiding strategy beginning from HLN0, which uses just
pT and Mjet. For each iteration, the selected EFP is the one with the largest ADO with the CNN in the di↵erently-ordered
subspace Xn�1.

where 1 corresponds to f correctly ordering the points
and 0 corresponds to inverted ordering. Starting again
from the jet pT and Mjet information, we identify the
subset of event pairs that are incorrectly ordered:

Y0 =
n
(x, x0)

���TO
⇥
HLN0

⇤
(x, x0) = 0

o
. (36)

In each iteration, we find the EFP that has the highest
AUC in the incorrectly-ordered subspace,

EFPn = argmax
EFP2S

AUC[EFP]Yn�1 , (37)

construct a new joint classifier HLNn ⌘ HLN0 + nEFP,
and identify the next incorrectly-ordered subset of events:

Yn =
n
(x, x0)

���TO[HLNn](x, x
0) = 0

o
. (38)

Note that this procedure is completely independent of
the CNN.

The results from this truth-label guided procedure are
shown in in Fig. 5 in terms of the AUC and ADO. In
the first iteration, the classification performance is bet-
ter than in the black-box guided search, which makes
sense since the label guided method is trying to optimize
AUC directly. After 7 iterations, though, the classifica-
tion performance never rises above AUC = 0.951. As
mentioned in Sec. II B, isolating the incorrectly-ordered
pairs turns out to be counter productive, since some of
these pairs could never be ordered correctly even by the
optimal classifier. This emphasizes the value of using
the ADO relative to an already-trained network, to make
sure attention is focused on event pairs that have a chance
to be correctly ordered.

D. Physics Interpretation

By translating the CNN into a space of physically-
motivated observables, we can gain physical insight into
the observables used in the classification decision. In
particular, the first few observables in Table III give us
a glimpse at a possible alternative history for the field
of jet substructure, if combinations like C2 and D2 had
not been previously identified. Distributions of the EFPs
found in the first four iterations are shown in Fig. 7.

After pT and Mjet, the first EFP selected by the black-
box guided strategy is:

⇣
=2,�=

1

2

⌘

. (39)

The fact that a  = 2 observable shows up early in the
iterative procedure bolsters the evidence from Sec. IVA
that these kinds of observables are important for mapping
the CNN strategy. This is a chromatic number c = 2
graph, so just like jet mass, it probes deviations from 1-
prong substructure. However, it uses a 5-point correlator
(unlike mass which is a 2-point correlator) and it uses the
� = 1

2
angular exponent (unlike mass which uses � = 2).

Putting these together, Eq. (39) is an IRC-unsafe probe
of hard, small-angle radiation.

The second EFP is also IRC unsafe and also corre-
sponds to a c = 2 graph:

(=0,�=2). (40)

Here, though, we have  = 0 and � = 2, which is a probe
of soft, wide-angle radiation. It is interesting that the
black-box guided strategy selects these two complemen-
tary c = 2 observables in the first two iterations, indicat-

24
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satisfying the four favourable axioms of efficiency, additivity, symmetry and null player. In a multivariate analysis, the 
input variables can be considered as the players and the regression or classification performed by the machine learning 
algorithm can be considered as the payoff allowing for the inference of relative importance of each input variable in 
determining the output variable(s). This inference can be made locally for each prediction, and a global hierarchy of 
variable importance can be constructed as well for the system under study [9] to explain ensembles of trees or neural 
networks. SHapley Additive exPlanations (SHAP) is an popular tool sharing some basic principles with LIME that 
interprets machine learning models using Shapley values. 

Simple example from particle physics 

Figure 1. From physics to interpretations: a schematic diagram of the flow from kinematic distributions to local interpretations given 
by Shapley value distributions, ߮௫, using a Boosted Decision Tree and SHAP. This leads to the hierarchy of variable importance, 
represented by |߮௫|, of the kinematic variables facilitating a global interpretation of the BDT and providing insights into the dynamics 
driving the different channels 

An example of an interpretable analysis can be constructed for the measurement of the Yukawa coupling of the Higgs to 
the bottom quarks through the production of the Higgs in association with a bottom quark pair [10]. This measurement 
faces the challenge of extracting an extremely small signal from kinematically similar backgrounds which cannot be 
separated using traditional methods that are based on kinematic cuts. A machine learning model, for instance, a fitted BDT, 
makes the task much more feasible but at the cost of making the analysis less transparent. 

Understanding the dynamics is made possible through the attribution of variable importance once one uses Shapley 
values to interpret the trained BDT. In Fig. 1 (bottom panels) we show the predicted kinematic distributions for the signal 
and background processes  which are mostly similar. This does not prove to be a hurdle for a BDT since it can classify 
them very effectively leveraging higher-order correlations. The deformation of the kinematic distributions into the 
Shapley value distributions (top panels) incorporates these correlations learnt by  the machine learning model, hence, 
providing local interpretability of how the channels are separated. Finally, the plot in the right panel with the mean of the 
absolute Shapley values that quantifies how well the machine learning model separates the different channels overall 
leveraging a particular variable, lays out the hierarchy of variable importance and how the variables “play a cooperative 
game” to orchestrate the outcome providing a global interpretation of the model. Shapley values are rapidly gaining favour 
as a tool for interpreting machine learning models used in particle physics analyses [11–13]. 

Future of Interpretability 
When a black-box approach to multivariate analyses is taken, the predictive power of a machine learning model does not 
guarantee a concordance between the dynamics driving a physical process and the mathematical structure statistically 
modelled by the learning algorithm. Amongst the plethora of possible configurations the parametric solutions of the 
machine learning algorithm might assume, several solutions can easily be unphysical or simply be correct in only a 
subset of the states that the actual physical system can explore. Hence, the knowledge of how and why a machine learning 
model predicts a certain outcome for a physical system provides confidence that the results are not, by fluke, only seemingly 
correct, but rather stand on robust grounds of well understood physical theories, like the Standard Model of particle physics. 

The combination of machine learning with post hoc model interpretations has found applicability in various fields like 
complex systems, climate science, space science, astrophysics, astrobiology, etc. Wider acceptance and applications in 
other branches of physics is just a matter of time as the combination brings to our disposal the power to probe complex 
multivariate and non-linear systems  while not having to forsake the ability to understand the path to the solutions that we 
propose. 

[Grojean, Paul, Qian, Strümke, Nature Reviews Physics 2022]

E.g. SHapley Additive exPlanations (SHAP)
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Figure 1: Illustration of the uniformity and alignment concepts behind the contrastive
learning.

On this sphere we define the similarity between two jets as [36]

s(zi, zj) =
zi · zj
|zi||zj |

= cos ✓ij , (6)

with ✓ij being the angle between the jets in R. The contrastive loss for a positive pair of
jets is defined in terms of this distance as

Li = � log
e
s(zi,z0i)/⌧

P
j 6=i2batch

h
es(zi,zj)/⌧ + e

s(zi,z0j)/⌧
i , (7)

and the total loss is given by the sum over all positive pairs in the batch, L =
P

i Li. Be-
cause the positive pairs appear in the numerator, while the negative pairs contribute to the
denominator, the loss decreases when the distance between positive pairs becomes smaller
and when the distance between negative pairs becomes larger. The hyper-parameter ⌧

is referred to as the temperature and controls the relative influence of positive pairs and
negative pairs. The cosine similarity in Eq.(6) is not a proper distance metric, but we can
define an angular distance as d(zi, zj) = ✓ij/⇡ = 0 ... 1, such that it satisfies the triangle
inequality.

Uniformity vs alignment

The contrastive loss can be understood in terms of uniformity versus alignment on the
unit hypersphere defining R, illustrated in Fig. 1. The numerator of Eq.(7), describing
the positive pairs, is minimal when all jets and their augmented counterparts are mapped
to the same point, s(zi, z0i) = 1. On a hypersphere, the negative pairs cannot be pushed
infinitely far apart, as would be possible in Rdim(z), so the corresponding loss is minimal
when the jets are uniformly distributed on the hypersphere. We can measure uniformity
and alignment through

Lalign =
1

Nbatch

X

i2batch
s(zi, z

0
i)

Luniform =
1

Nbatch

X

i2batch
log

X

j 6=i

h
e
�s(zi,zj) + e

�s(zi,z0j)
i
. (8)
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FIG. 1: The proposed model and training scheme for a FM for jets. A jet is represented as a set of particles, each a
list of features, and some particles are replaced by masked tokens and passed through a transformer encoder. Training
aims to predict the discrete token identity, defined by the encoder of a pre-trained VQ-VAE, of the masked particles.

II. RELATED WORK

Foundation models, such as Masked Language Models
(BART [2], BERT [3]), Generative Pre-trained Trans-
former (GPT) [4, 5], Vision Transformer (ViT) [6],
DINO [7] and their combinations, such as DALLE [9],
Flamingo [10] and others have primarily been explored
in the domains of language and vision. We refer readers
to the recent review [1] for an overview. Most closely re-
lated to this work is the BERT model [3], which uses the
masking and prediction of missing words as a pre-training
task, and the BEiT model [8], which adapts the masked
language modeling method to images by masking and
predicting patches of input images. On masked modeling
schemes for data which consists of unorderd sets of inputs,
the impact of removing positional information in masked
image modeling was examined in Ref. [11], and using posi-
tion as a target when processing unordered image patches
was explored in Ref. [12]. The first steps in developing
foundation models for science have been developed in e.g.
protein biology [13], molecular chemistry [14, 15], and
cosmology [16, 17], showing their ability to learn informa-
tive representations that are useful in these domains for
various downstream tasks.

The first steps in self-supervised learning on jets was
explored in Refs. [18–20], largely focusing on contrastive
pre-training using augmentations of jets. Supervised pre-
training strategies have also been explored in Ref. [21].
Transformer models were trained on large jet datasets for
classification in a supervised setting in Ref. [22, 23] and
several transformer-based applications have since been

developed (for example, see Refs. [24–31]). Transformers
have also been used for auto-regressive density estimation
and jet classification [32, 33]. Notably, Ref. [32] also
explored the discretization of continuous particle features
to form jet sequences, which we examine in this work.

In parallel to the present effort on self-supervised foun-
dation models, investigations are ongoing on the potential
of supervised FMs in HEP by using physics-motivated
pretext tasks followed by fine-tuning in a hierarchical
setting [34].

III. OVERVIEW OF METHODS

The proposed model and training scheme is summarized
in Fig. 1. In line with the MLM framework employed by
BERT [3], the MPM objective described in Section III A
involves selecting a subset of particles within each jet to
form the masked set. A predefined masking strategy is
applied to this subset. The goal of MPM is to build a
model capable of inferring the attributes of the original
particles within the masked set, using information from
all other particles present in the jet. As particles form
unordered sets, in contrast to the sequential nature of
sentences, we develop a masked prediction scheme which
is applicable for unordered set-based data. An additional
challenge stems from the continuous nature of particle
features, in contrast to the discrete dictionary found in
language models but similar to the challenges of masking
image patches in CV. In Section III B, we tackle this chal-
lenge employing methods akin to those used in BEiT [8].
We discuss the fine-tuning of the pre-trained model to
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Figure 1: Schematics of the di↵erent steps (tokenization, generation, classification) in the OmniJet-↵ model.

model can be used as a foundation model for jet
physics. However, the standard GPT constructions
are not built to deal with continuous input data, but
rather tokenized data. As point clouds are the most
versatile representation of physics data [7, 16, 41–
43] and can incorporate both event level informa-
tion, jet substructure, and even low-level detector
signals, finding a suitable input transformation for
point clouds to tokens is the most pressing problem.
Various tokenization strategies have been explored,
for example using a simple mapping based on binning
the input space in [37], a Gaussian mixture model in
[38], and using an additional conditional embedding
network in [39].

Here, we follow the conditional tokenization strat-
egy from [39, 44, 45], but first take a step back to
verify the quality and trade-o↵s involved in building
these tokens. This will allow us to formulate qual-
ity measures to choose a suitable tokenization model,
leading to an increase in codebook size from 512 to-
kens in [39] to 8192 tokens.

Using this representation, we will first demon-
strate training a generative model for jets as to-
kens in an unsupervised way for the JetClass [35]
dataset. Compared to [37], the core of our archi-
tecture is a transformer-decoder, not a transformer-
encoder.

Finally, this allows us to test whether the informa-
tion encoded in a model that was trained to generate
jets can also be transferred to the task of classify-
ing them. Observing such a transfer ability across
di↵erent classes of tasks — as opposed to transfer
between di↵erent classification or generation prob-
lems — would be a crucial ingredient to building
foundation models for physics data, and has not yet

been achieved. A graphical representation of this ap-
proach is provided in Figure 1. As this is the first
prototype of a model to tackle all tasks with jets in
particle physics, it is named OmniJet-↵.
The rest of the paper is organized as follows: Sec-

tion II introduces the data as well as the tokeniza-
tion approach, the generative architecture, and the
transfer learning strategy. Next, Section III shows
the results of the tokenization study, the generative
performance, as well as tests of the transfer learning
capabilities of the model. Finally, Section IV sum-
marizes the results and provides a brief outlook.

II. METHODS AND DATASET

A. Dataset

All studies are performed using the JetClass

dataset [35], originally introduced in [10]. It con-
tains both jet-level and constituent-level features for
ten di↵erent types of jets initiated by gluons and
quarks (q/g), top quarks (t, subdivided by their de-
cay mode into t ! bqq

0 and t ! b`⌫) , as well as W ,
Z, and H (H ! bb̄, H ! cc̄, H ! gg, H ! 4q, and
H ! `⌫qq

0) bosons.
Events are simulated using Mad-

Graph5 aMC@NLO [46] with parton shower-
ing and hadronization done by Pythia [47]. A
simplified detector simulation implemented in
Delphes [48] using the CMS detector [49] card
is performed. Constituents are clustered into jets
using the anti-kT algorithm [50] with a distance
parameter of R = 0.8.

Jets are selected if they have a transverse momen-
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with standardized settings derived from tuning to CMS experimental data [27] is used to

generate the nominal scenario.

Domain completeness can be achieved by considering a set of augmentations which

represents the full knowledge embedded in our high-fidelity simulator. Accordingly, we
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FIG. 1. Neural network architecture used to train OmniLearn. The main neural network blocks of the architecture are shown
in the further left with detailed architecture design shown for each block in the right. See the text for more details.

perturbation is applied at the initial time t = 0, condi-
tioning the model over the time parameter ensures the
network is able to accommodate both perturbed and un-
perturbed data simultaneously. To build OmniLearn,
we design the architecture with a shared representation
whose outputs are then fed to task-specific neural net-
works. This approach enables flexibility and efficient de-
sign, since downstream task applications only need to
load the shared representation and relevant task-specific
network, reducing the overall model. The main building
blocks of the network are summarized in Fig. 1. In the
following subsections we will provide a detailed descrip-
tion of the model and the core design choices.

A. Point-Edge Transformer

The shared representation of the network takes as in-
puts the particles clustered inside the jets and is condi-
tioned on the diffusion time parameter. The time infor-
mation, following previous diffusion models for collider
physics [20, 52–55], is encoded to a higher dimensional
space using a time embedding layer. The time embedding
consists Fourier features [56] followed by two multi-layer
perceptrons (MLPs) with GELU activation function [57].
Unless otherwise stated, all MLP layers used in this work
are followed by a GELU non-linear activation. Contrary
to previous diffusion models, we modify the time embed-
ding by multiplying the output of the Fourier features
by the time parameter, such that the output of the time
embedding is zero when the input time is also zero. This
choice ensures the time embedding is effectively turned
off when the model is evaluated in classifier mode. The
next step is to combine the time information with the in-
put particle information. Datasets store different levels
of information for each particle. The most basic infor-
mation, described by the kinematic information of each
particle, is always stored. However, additional informa-
tion such as particle identification (PID) and vertex in-
formation for charged particles is only available in spe-

cific datasets, with the latter only provided in the Jet-
Class dataset [41] among benchmark, public jet datasets.
To avoid training multiple models to accommodate each
dataset, and thus defeating the purpose of a generalized
model, we instead adopt a feature drop approach. Dur-
ing training, we consider as inputs both the kinematic
information for each particle and their respective PID1.
With a probability p = 0.2 we drop the PID information
by replacing it with zeros. This approach is similar to
dropout layers [58] that encourage the network to learn
a useful representation both in the presence and absence
of these features. After the feature drop, the inputs are
encoded to a higher dimensional space using a feature
embedding consisting of two MLP layers. The outputs of
the feature embedding are then combined with the time
information though a shift and scaling operation. Before
the transformer block we introduce a positional token to
encode the geometrical information of the neighborhood
surrounding each particle inside the jet. Even though
transformers are capable of learning general correlations
between particles, the addition of local information can
generally improve performance [40], creating a better la-
tent representation that is aware of the distances between
particles. We create the local encoding using dynamic
graph convolution (DGCNNs) layers where the neighbor-
hood is defined using a k-nearest neighbor algorithm with
number of neighbors fixed to 10. The distances are cal-
culated in the pseudorapidity-azimuthal angle space. For
each of the k-neighbors, edge features are defined based
on the particle features concatenated with the subtrac-
tion between the particle features and each of the respec-
tive neighbors. An MLP is used over all edges before
an average pooling operation over the neighbor dimen-

1 The vertex information while present in the JetClass dataset is
not used during training. While that could also be included in
the training methodology, our focus is the application to multiple
datasets without this information, hence for simplicity we skip
these features.
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Figure 1: Illustration of the uniformity and alignment concepts behind the contrastive
learning.

On this sphere we define the similarity between two jets as [36]

s(zi, zj) =
zi · zj
|zi||zj |

= cos ✓ij , (6)

with ✓ij being the angle between the jets in R. The contrastive loss for a positive pair of
jets is defined in terms of this distance as

Li = � log
e
s(zi,z0i)/⌧

P
j 6=i2batch

h
es(zi,zj)/⌧ + e

s(zi,z0j)/⌧
i , (7)

and the total loss is given by the sum over all positive pairs in the batch, L =
P

i Li. Be-
cause the positive pairs appear in the numerator, while the negative pairs contribute to the
denominator, the loss decreases when the distance between positive pairs becomes smaller
and when the distance between negative pairs becomes larger. The hyper-parameter ⌧

is referred to as the temperature and controls the relative influence of positive pairs and
negative pairs. The cosine similarity in Eq.(6) is not a proper distance metric, but we can
define an angular distance as d(zi, zj) = ✓ij/⇡ = 0 ... 1, such that it satisfies the triangle
inequality.

Uniformity vs alignment

The contrastive loss can be understood in terms of uniformity versus alignment on the
unit hypersphere defining R, illustrated in Fig. 1. The numerator of Eq.(7), describing
the positive pairs, is minimal when all jets and their augmented counterparts are mapped
to the same point, s(zi, z0i) = 1. On a hypersphere, the negative pairs cannot be pushed
infinitely far apart, as would be possible in Rdim(z), so the corresponding loss is minimal
when the jets are uniformly distributed on the hypersphere. We can measure uniformity
and alignment through

Lalign =
1

Nbatch

X

i2batch
s(zi, z

0
i)

Luniform =
1

Nbatch

X

i2batch
log

X

j 6=i

h
e
�s(zi,zj) + e

�s(zi,z0j)
i
. (8)
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aims to predict the discrete token identity, defined by the encoder of a pre-trained VQ-VAE, of the masked particles.

II. RELATED WORK

Foundation models, such as Masked Language Models
(BART [2], BERT [3]), Generative Pre-trained Trans-
former (GPT) [4, 5], Vision Transformer (ViT) [6],
DINO [7] and their combinations, such as DALLE [9],
Flamingo [10] and others have primarily been explored
in the domains of language and vision. We refer readers
to the recent review [1] for an overview. Most closely re-
lated to this work is the BERT model [3], which uses the
masking and prediction of missing words as a pre-training
task, and the BEiT model [8], which adapts the masked
language modeling method to images by masking and
predicting patches of input images. On masked modeling
schemes for data which consists of unorderd sets of inputs,
the impact of removing positional information in masked
image modeling was examined in Ref. [11], and using posi-
tion as a target when processing unordered image patches
was explored in Ref. [12]. The first steps in developing
foundation models for science have been developed in e.g.
protein biology [13], molecular chemistry [14, 15], and
cosmology [16, 17], showing their ability to learn informa-
tive representations that are useful in these domains for
various downstream tasks.

The first steps in self-supervised learning on jets was
explored in Refs. [18–20], largely focusing on contrastive
pre-training using augmentations of jets. Supervised pre-
training strategies have also been explored in Ref. [21].
Transformer models were trained on large jet datasets for
classification in a supervised setting in Ref. [22, 23] and
several transformer-based applications have since been

developed (for example, see Refs. [24–31]). Transformers
have also been used for auto-regressive density estimation
and jet classification [32, 33]. Notably, Ref. [32] also
explored the discretization of continuous particle features
to form jet sequences, which we examine in this work.

In parallel to the present effort on self-supervised foun-
dation models, investigations are ongoing on the potential
of supervised FMs in HEP by using physics-motivated
pretext tasks followed by fine-tuning in a hierarchical
setting [34].

III. OVERVIEW OF METHODS

The proposed model and training scheme is summarized
in Fig. 1. In line with the MLM framework employed by
BERT [3], the MPM objective described in Section III A
involves selecting a subset of particles within each jet to
form the masked set. A predefined masking strategy is
applied to this subset. The goal of MPM is to build a
model capable of inferring the attributes of the original
particles within the masked set, using information from
all other particles present in the jet. As particles form
unordered sets, in contrast to the sequential nature of
sentences, we develop a masked prediction scheme which
is applicable for unordered set-based data. An additional
challenge stems from the continuous nature of particle
features, in contrast to the discrete dictionary found in
language models but similar to the challenges of masking
image patches in CV. In Section III B, we tackle this chal-
lenge employing methods akin to those used in BEiT [8].
We discuss the fine-tuning of the pre-trained model to
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Figure 1: Schematics of the di↵erent steps (tokenization, generation, classification) in the OmniJet-↵ model.

model can be used as a foundation model for jet
physics. However, the standard GPT constructions
are not built to deal with continuous input data, but
rather tokenized data. As point clouds are the most
versatile representation of physics data [7, 16, 41–
43] and can incorporate both event level informa-
tion, jet substructure, and even low-level detector
signals, finding a suitable input transformation for
point clouds to tokens is the most pressing problem.
Various tokenization strategies have been explored,
for example using a simple mapping based on binning
the input space in [37], a Gaussian mixture model in
[38], and using an additional conditional embedding
network in [39].

Here, we follow the conditional tokenization strat-
egy from [39, 44, 45], but first take a step back to
verify the quality and trade-o↵s involved in building
these tokens. This will allow us to formulate qual-
ity measures to choose a suitable tokenization model,
leading to an increase in codebook size from 512 to-
kens in [39] to 8192 tokens.

Using this representation, we will first demon-
strate training a generative model for jets as to-
kens in an unsupervised way for the JetClass [35]
dataset. Compared to [37], the core of our archi-
tecture is a transformer-decoder, not a transformer-
encoder.

Finally, this allows us to test whether the informa-
tion encoded in a model that was trained to generate
jets can also be transferred to the task of classify-
ing them. Observing such a transfer ability across
di↵erent classes of tasks — as opposed to transfer
between di↵erent classification or generation prob-
lems — would be a crucial ingredient to building
foundation models for physics data, and has not yet

been achieved. A graphical representation of this ap-
proach is provided in Figure 1. As this is the first
prototype of a model to tackle all tasks with jets in
particle physics, it is named OmniJet-↵.
The rest of the paper is organized as follows: Sec-

tion II introduces the data as well as the tokeniza-
tion approach, the generative architecture, and the
transfer learning strategy. Next, Section III shows
the results of the tokenization study, the generative
performance, as well as tests of the transfer learning
capabilities of the model. Finally, Section IV sum-
marizes the results and provides a brief outlook.

II. METHODS AND DATASET

A. Dataset

All studies are performed using the JetClass

dataset [35], originally introduced in [10]. It con-
tains both jet-level and constituent-level features for
ten di↵erent types of jets initiated by gluons and
quarks (q/g), top quarks (t, subdivided by their de-
cay mode into t ! bqq

0 and t ! b`⌫) , as well as W ,
Z, and H (H ! bb̄, H ! cc̄, H ! gg, H ! 4q, and
H ! `⌫qq

0) bosons.
Events are simulated using Mad-

Graph5 aMC@NLO [46] with parton shower-
ing and hadronization done by Pythia [47]. A
simplified detector simulation implemented in
Delphes [48] using the CMS detector [49] card
is performed. Constituents are clustered into jets
using the anti-kT algorithm [50] with a distance
parameter of R = 0.8.

Jets are selected if they have a transverse momen-
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Iteration (n) EFP  � Chrom # ADO[EFP,CNN]Xn�1 AUC[EFP] ADO[HLNn,CNN]Xall AUC[HLNn]

0 Mjet + pT – – – – – 0.9259 0.9119

1 2 1
2 2 0.8144 0.8190 0.9570 0.9382

2 0 2 2 0.6377 0.8106 0.9673 0.9458

3 0 – 1 0.5460 0.6737 0.9692 0.9476

4 1 1
2 2 0.5274 0.8464 0.9712 0.9487

5 �1 – 1 0.5450 0.5882 0.9714 0.9504

6 1 1
2 4 0.5382 0.7678 0.9734 0.9523

7 �1 1
2 2 0.5561 0.5957 0.9741 0.9528

TABLE III. The EFPs selected during each iteration of the black-box guiding strategy beginning from HLN0, which uses just
pT and Mjet. For each iteration, the selected EFP is the one with the largest ADO with the CNN in the di↵erently-ordered
subspace Xn�1.

where 1 corresponds to f correctly ordering the points
and 0 corresponds to inverted ordering. Starting again
from the jet pT and Mjet information, we identify the
subset of event pairs that are incorrectly ordered:

Y0 =
n
(x, x0)

���TO
⇥
HLN0

⇤
(x, x0) = 0

o
. (36)

In each iteration, we find the EFP that has the highest
AUC in the incorrectly-ordered subspace,

EFPn = argmax
EFP2S

AUC[EFP]Yn�1 , (37)

construct a new joint classifier HLNn ⌘ HLN0 + nEFP,
and identify the next incorrectly-ordered subset of events:

Yn =
n
(x, x0)

���TO[HLNn](x, x
0) = 0

o
. (38)

Note that this procedure is completely independent of
the CNN.

The results from this truth-label guided procedure are
shown in in Fig. 5 in terms of the AUC and ADO. In
the first iteration, the classification performance is bet-
ter than in the black-box guided search, which makes
sense since the label guided method is trying to optimize
AUC directly. After 7 iterations, though, the classifica-
tion performance never rises above AUC = 0.951. As
mentioned in Sec. II B, isolating the incorrectly-ordered
pairs turns out to be counter productive, since some of
these pairs could never be ordered correctly even by the
optimal classifier. This emphasizes the value of using
the ADO relative to an already-trained network, to make
sure attention is focused on event pairs that have a chance
to be correctly ordered.

D. Physics Interpretation

By translating the CNN into a space of physically-
motivated observables, we can gain physical insight into
the observables used in the classification decision. In
particular, the first few observables in Table III give us
a glimpse at a possible alternative history for the field
of jet substructure, if combinations like C2 and D2 had
not been previously identified. Distributions of the EFPs
found in the first four iterations are shown in Fig. 7.

After pT and Mjet, the first EFP selected by the black-
box guided strategy is:

⇣
=2,�=

1

2

⌘

. (39)

The fact that a  = 2 observable shows up early in the
iterative procedure bolsters the evidence from Sec. IVA
that these kinds of observables are important for mapping
the CNN strategy. This is a chromatic number c = 2
graph, so just like jet mass, it probes deviations from 1-
prong substructure. However, it uses a 5-point correlator
(unlike mass which is a 2-point correlator) and it uses the
� = 1

2
angular exponent (unlike mass which uses � = 2).

Putting these together, Eq. (39) is an IRC-unsafe probe
of hard, small-angle radiation.

The second EFP is also IRC unsafe and also corre-
sponds to a c = 2 graph:

(=0,�=2). (40)

Here, though, we have  = 0 and � = 2, which is a probe
of soft, wide-angle radiation. It is interesting that the
black-box guided strategy selects these two complemen-
tary c = 2 observables in the first two iterations, indicat-
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