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= Deepfer Understanding
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http://iaifi.org

Next Generation of Al + Physics Talent

|AIF] Postdoctoral Fellows Application deadline typically early October

Micallef Mishra-Sharma Yang

Albergo Boyda  Bright-Thonnney  Cuesta Dogra Gagliano Golubeva Grosso
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Summer School 2024
August 5—August 9

Summer Workshop: August 12-16, 2024
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https://iaifi.org/summer-workshop
https://iaifi.org/fellows.html

Machine Learning at DFP-Pheno 2024 e Pheno 2019

Machine Learning & Al: Computing, Analysis Tools, Machine Learning & Al:
New Physics and Data Handling Collider Physics

Decision tree autoencoder anomaly detection on FPGA at L1 triggers - take 2 Tae Min Hong ARCANE Reweighting: A Solution to the Negative Weights Problem in Collider Monte Carlo Prasanth Shyamsundar Trackless Jet Vertexing and Timing using ML Wen Han Chiu
David Lawrence 105, University of Pittsburgh 14:00 - 14:15 David Lawrence 105, University of Pittsburgh 16:00 - 16:15 Law 108, University of Pittsburgh 14:00 - 14:15
AutoDQM for Anomaly Detection in the CMS Detector Chosila Sutantawibul A Matrix-Based Approach for Jet-Parton Assignment Leveraging Mass and Momentum Using CMS Open Data Towards a data-driven model of hadronization using normalizing flows Ahmed Youssef
David Lawrence 105, University of Pittsburgh 14:15 - 14:30 FHC e Law 109, University of Pittsburgh 14:15 - 14:30
Residual ANODE Ranit Das Resolving Combminatorial Probl with Quantum Algorithms Jacob Scott Search for New Physics in the Merged Diphoton plus Photon final state with the CMS Detector Austin Edwin Townsend
David Lawrence 105, University of Pittsburgh 14:30 - 14:45 David Lawrence 105, University of Pittsburgh 16:30 - 16:45 Law 108, University of Pittsburgh 14:30 - 14:45
Exploring Optimal Transport for Event-Level Anomaly Detection at the Large Hadron Collider Hancheng Li Multi-vertex jet trigger at ATLAS' upgrade for HL-LHC using Boosted Decision Trees on FPGAs Santiago Cane The versatility of flow-based fast calorimeter surrogate models lan Pang
David Lawrence 105, University of Pittsburgh 14:45 - 15:00 David Lawrence 105, University of Pittsburgh 16:45 - 17:00 Law 108, University of Pittsburgh 14:45 - 15:00
Constraining the SMEFT Higgs Sector with Machine Learning Radha Mastandrea Data Quality Monitoring for the HL-LHC Upgrade to the CMS Outer Tracker Brandi Nicole Skipworth Studies into di-Tau mass reconstruction for high mass resonances at the ATLAS experiment Kyle Angelo Granados
David Lawrence 105, University of Pittsburgh 15:00 - 15:15 David Lawrence 105, University of Pittsburgh 17:00 - 17:15 Law 108, University of Pittsburgh 15:00 - 15:15
Probing a GeV-scale Scalar Boson and a TeV-scale Vector-like Quark Associated with SU(1) {T3R}S at the Large Hadron... A Herwig?7 Underlying Event Tune for Relativistic Heavy lon Collider Energies at 200 GeV Umar Sohail Qureshi Deep Learning Based Tagger for Highly Collimated Photons at CMS Kyungmin Park

imar Sohail Qureshi " . ’
HpaiSaliCres David Lawrence 105, University of Pittsburgh 17:15-17:30 Law 108, University of Pittsburgh 15:15 - 15:30

Quantum Field & String Theory: QCD & Heavy lon Physics: Electroweak & Higgs Physics:
Non-perturbativity and Amplitudes Jets and Energy Correlators Electroweak Physics at the LHC

Machine learning and (large-N) field theory Zhengkang Zhang Jet Calibration in ATLAS Using Machine Learning Networks Benji Lunday & New W Boson Decay Channel at the LHC Peiran Li
David Lawrence 104, University of Pittsburgh 16:45 - 17:00 Law 107, University of Pittsburgh 15:00 - 15:15 David Lawrence 207, University of Pittsburgh 17:00 - 17:15
;IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

L [ ] [ ] [ ]
Instrumentation: Neutrinos, F Tod . : : Dark Matter: WIMPs,
o : oday at Lunch: DOE Pl Meeting : . .
n
Dark Matter, and Scintillation : C . : DM Simulation and ML
: omputational HEP and AI/ML :
NuDaot, R&D testbed for future large-scale neutrino detectors Masooma Sarfraz : : Sweeping the Dust Away: An unbiased map of the Milky Way's gravitational potential using unsupervised ML Eric Putney
Law 111, University of Pittsburgh 14:45 - 15:00 NN REEREERERRERRERREnnY David Lawrence 120, University of Pittsburgh 16:45 - 17:00

Mini-Symposium: : Coordinating Panel for Software and : Mini-Symposium: Neutrino Science
Quantum Instrumentation : Computing (CPSC) Townhall : with the DUNE Experiment

Exploring Quantum Machine Learning for High-Energy Physics Jinghong Yang E Coordinating panel for software and computing townhall E Deep-learning at DUNE Far Detector Prof. Jianming Bian

University of Pittsburgh / Carnegie Mellon University 15:10 - 15:30 : NI A PRSbUTGH  CRras Molior GoNersky TR0 : University of Pittsburgh / Carnegie Mellon University 16:45 - 17:00

E : Neural Network Based Fast Optical Simulation Method in ProtoDUNE-VD Shuaixiang (Shu) Zhang

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII. UmversnyoanBburgh/(‘ ,MellonL‘ ‘} 17:00 - 17:15
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“...but what is the machine actually learning?”

What does it really mean for ML to be “Interpretable™?
(Or explainable, trustworthy, safe, robust, aligned, helpful, transparent, ...)

Obligatory apology that examples below are
heavily drawn from my research in collider physics
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My evolving perspective:

The desire for human interpretability often arises when

we imperfectly specify the task we want to accomplish

A more actionable definition of interpretability:
identifying low-rank structures in high-dimensional datasets




Interpretable Machine Learning for Particles Physics

A
Confronting the Black Box
To benefit from machine learning advances, we must ensure
that our algorithmic choices align with our scientific goals

Case Study in Jet Classification

When possible, pursue active interpretability, where you
control the network architecture and training paradigm

g The Next Frontier for Interpretability
( ) I:> Foundation models identify generically useful features,

which challenge the importance of task alignment
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Confronting the Black Box

To benefit from machine learning advances, we must ensure
that our algorithmic choices align with our scientific goals
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Many HEP problems can be

L|ke||h00d RatIO TI"ICk expressed in this form!

Key example of simulation-based inference

Goal: Estimate p(x) / q(x) prob() |
Training Data: Finite samples P and Q
Learnable Function: f(x) parametrized by, e.g., neural networks x

Loss Function(al): L = —< log f(:L‘)>P -+ <f($) — 1>Q

[see e.g. Cranmer, Pavez, Louppe, arXiv 2015; D’Agnolo, Wulzer, PRD 2019;
simulation-based inference in Cranmer, Brehmer, Louppe, PNAS 2020;
relation to f-divergences in Nguyen,Wainwright, Jordan,AoS 2009; Nachman, Thaler, PRD 2021]
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Many HEP problems can be

L|ke||h00d RatIO TI"ICk expressed in this form!

Key example of simulation-based inference

Goal: Estimate p(x) / q(x) prob() |
Training Data: Finite samples P and Q
Learnable Function: f(x) parametrized by, e.g., neural networks x
Loss Function(al): L = —< log f(:l’})>P -+ <f(£l’}) — 1>Q
L A
Asymptotically:  argmin L, = M Likelihood ratio o8 6
f(z) q(x) »
- 5{&51 L = / dz p(z) log % Kullback—Leibler divergence

[see e.g. Cranmer, Pavez, Louppe, arXiv 2015; D’Agnolo, Wulzer, PRD 2019;
simulation-based inference in Cranmer, Brehmer, Louppe, PNAS 2020;
relation to f-divergences in Nguyen,Wainwright, Jordan,AoS 2009; Nachman, Thaler, PRD 2021]

|0
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Asymptotically, same structure as Lagrangian mechanics!

Action: L = /daz L(x)

Lagrangian: L(z) = —p(x)log f(z) + q(x) (f(:l:) — 1)

oL _
of

Requires shift in focus from solving problems to specifying problems

0 Solution: ()

Euler-Lagrange:



https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/math/0510521
https://arxiv.org/abs/2101.07263

“What is the machine learning?”

For this loss function, an estimate of the likelihood ratio
derived from sampled data and regularized by the
network architecture and training paradigm
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“What is the machine learning?”

For this loss function, an estimate of the likelihood ratio
derived from sampled data and regularized by the
network architecture and training paradigm

“But | want to understand what it has learned!”

Do you really expect the N.B. QFT calculations
likelihood ratio to take on a A

elementary representation

particularly nice functional form?

€€ ))
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Why might we want ML to be “Interpretable™?

Or explainable, trustworthy, safe, robust, aligned, helpful, transparent, ...

Scientific Reasons: Could be working in non-asymptotic regime
Training data might be biased in some way

Result could depend on poorly modeled features
Limited ability to perform independent validation
Need for compact symbolic expressions

Desire to generalize away from specific context

Sociological Reasons: Skeptical of algorithmic/statistical/computational reasoning
Need to explain decisions to external stakeholders
Desire to manage risks from unforeseen outcomes

All valid reasons, but suggest imperfect specification of our initial goals!
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Likelihood Ratio Trick in HEP O Sl

Detector Unfolding Monte Carlo Reweighting Resolution Estimation

Detector-level Particle-level | | | Distributions for Gen pr € [695, 705] GeV
;ﬂtial l‘/}/{eights‘ o K1 CMS 2011 Open Simulation r
eural Resampler, K = P
— Data 108} __. NeuralR lor. Optimal K _ 0.25f DNN .
s eural Resampler, Optima EEN < i
2 \ m _ PFN
2 5 MG5 aMC + Pythia 8 0.20 PEN-PID
6 - ]
\ % 10 pp - tt, NLO QCD L2221 CMS
>
o] =
g oo, % 0.15
Step 1: Step 2: = 1041 ! e
Reweight Sim. to Data Reweight Gen. 8 1 O L : -'—.. a
Dat w o) o "11‘ 0.10F
v Vn—1 =2 Wn Vil —= Uy O | L
| -,
9 . . Pull Weights . . 102} I T
= Simulation _“, Generation : e 0.05}
= e 1
)
g = /)ﬂ\‘ +—— % « o I
wn Push Weights 10 . : e : ‘ s "~ " —r : |
-1 0 1 2 3 4 0.0055 25 30 35 40 45

I —— Weights Jet Energy Resolution 0, [GeV]

[Andreassen, Komiske, Metodiev, Nachman, [Nachman, JDT, PRD 2020; inspired by [Gambhir, Nachman, JDT, PRL 2022, PRD 2022]
JDT, PRL 2020; + Suresh, ICLR SimDL 2021] Andersen, Gutschow, Maier, Prestel, EP|C 2020]

For these applications, goal is “accuracy” more than “interpretability”

Ask me offline why | think standard methods to assess accuracy, quantify uncertainties, and validate results are incomplete
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https://arxiv.org/abs/1911.09107
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https://arxiv.org/abs/2007.11586
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https://arxiv.org/abs/2205.05084

“Interpretability” as the Primary Goal =, . %"
E.g. modeling nuclear binding energies Sl gl

Symbolic Regression Latent Space Topography

Model Order Obtained Function '; Z ;f;:;?,nn:ml:r .
. @7 1) (1 (21— BY) 1 167) Human VS. Machine
2 3.42(Z — 14.6) ({"’F — 2,191 —4.38) (I - 0.110log(4)) + 8 — P +0.301 P Casten factor
3 —2.02¢ 040727 P=(0.0402)7 1 9 99.0.867(N 27 — 0.426 P(log(Z) — 3.30) + I - 175} shell 175} PC 4 e
4 A2/3€7A2 3+Zl.1o,ZHOg (%) + 0-6346A2 3L VA-N + 0.290ynyz + 0.246 - ;:55?% %
5 (0.0000154)" A" (P(N — Z)* + N) (0.0000154(N — 1) + P) RS 150 150} B
6 W—exp((ﬂ—%—l‘Ql) (2(P+0.108) (P%—PN) —'yz(l—yN)—%—OA%)) g . %
7 1.351 ((0.324 — I) (- Z — 1.78) (230X — 0.111 (A + ")) — P + 1.351) ’ 125 125} »
8 (—0.801"¥3=72) 1 0.570P — 2I)(—0.112 + (A — (N — Z)? + 48)0.8017) o ' iﬁ‘%“%
3 75 FE° 100} e
9 9.20 - 1072% - 1330*° (—1.97 + yn (=1 4+ vz) — vz + P)(—1330 + N> — 2N Z + Z?)(—670 + N> — 2N Z + Z?) gﬁgaﬁiw ° . . 100 oagljﬂ%‘
10 3.02exp (—1.91P1-94 (%)Am —0.895¢™%**"N N? — 0.0268(N — 1)2) “ 751 - 25| -
oA
[Munoz, Udrescu, Garcia Ruiz, arXiv 2024; see also g%gﬁ:ﬁ@‘”‘“ 50 50 N .
Cranmer, Sanchez-Gonzalez, Battaglia, Xu, Cranmer, Spergel, Ho, NeurlPS 2020] - . y ‘ ' g =
¥ 251 Mmw- 25} -
LEEE T L. =5 .
0 | » O _I I I b B :E ©
. .. —_— (Z—N) 0 50 100 0 50 100
Cf. Semi-Empirical EZ,N)= (—Vm2+/32+ l/ocﬂ-l-ﬁ2 7T W) [(Z+ N—1)—y(Z+N—1)*] z 7
Mass Formula 4. 8¢ (1_6LZ‘-;NI> [gj —*(5-)4/3]- 1)
o 1o (Z 4 N)'ls Z+N /L5 2/ i ‘ [Kitouni, Nolte, Trifinopoulos, Kantamneni, Williams, ICML 2023;
[Weizsacker, 1935] Die Konstanten a, 3, v, 8, 7o wurden nun auf zwei Wegen bestimmt. + Pérez-Diaz, to appear ICML 2024]

Identifying low-rank structures in high-dimensional datasets

This is an actionable definition of interpretability, which may or may not be relevant to the physics problem of interest
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https://arxiv.org/abs/2306.06099
https://arxiv.org/abs/2404.11477
https://arxiv.org/abs/2006.11287

Case Study in Jet Classification

When possible, pursue active interpretability, where you
control the network architecture and training paradigm
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The More Things Change...

Jet classification, from my talk at Pheno 2019

Application of Likelihood Ratio Trick Interpretability in Machine Learning

Signal Background
0000 [oooo

Binary Classification 8833) (8s8¢ Introducing Energy Flow Networks st S
| ° An architecture designed for interpretability

Quark Gluon
VS assuming trustable
. training data Latent space of dim £ Linear welghts

S(j):F(VhV%aW) ZPTZ yza¢z

A eJ A

}l((Quark =1 E _ , E
Flnd h / SuCh that ) ............................... Parametrized with Neural Networks «wmmm
h(GIuon) =0

Flexible enough to describe any™ IRC-safe observable

(assuming large enough ¥)

Best you can do: h(j) = p(j’Q) Generalization: Particle Flow Networks (aka “Deep Sets”)
(Neyman-Pearson lemma) p<j|Q) —I_ p(j‘G)

[K omiske, Meto d v, JDT, 1810.05165; I8I005I65
special case of Zaheer, Kottur, Ravanbakhsh, Poczos, Salal kh tdinov, Smola, 1703.061 14]

Jesse Thaler — Deep Learning (and Deep Thinking) in Collider Physics 17 Jesse Thaler — Deep Learning (and Deep Thinking) in Collider Physics 26
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Does this Really Count as “Interpretable™?

Visualizing Energy Flow Networks

Trying to plot
256 dimensional
latent space

R
/

See Pheno 2019
talk for insights
atL =2

Log Radial Distance In

Azimuthal Angle ¢
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https://arxiv.org/abs/1810.05165

Three Lessons since Pheno 2019 e
Highlighting the power of active interpretability

If you have a catalog of trusted observables, you can
translate a black-box algorithm on low-level inputs
into a simple classifier on high-level features

If there are simple operations like multiplication and
(@1 P%) ., sums that don't really require “interpretation”, you can
bake those into your machine learning architecture

10(51) — Do) If there is a property you want your network to have,
1) — 2 . . . . .
make sure to impose algorithmic guardrails, otherwise

< Ll|p1 — p2| . . . L
L the machine might pursue undesirable optimization

Jesse Thaler (MIT, IAIFl) — Interpretable Machine Learning for Particle Physics 20



Translating the Black Box

Selecting Energy Flow Polynomials that mimic CNN decisions

Iteratively building likelihood ratio estimate
from catalog of high-level observables

Signal/Background Pairs Black-Box
Guided
. . Search
BBN HE BBN
T No . . I
S o I
Ordering? . . Ordering
J T _)@ J
o .
HE C HLN - -] L» @ 9
o Yes O HLN

Jesse Thaler (MIT, IAIFl) — Interpretable Machine Learning for Particle Physics

A glimpse at an alternative history
for field of jet substructure

Iteration (n)| EFP | x [ Chrom #
0 Mjet + pr| — —
1 léfy- 2 2
2 ﬂ 0 2
3 . 0 -
4 % 1 3
5 . -1 -
6 <> 1L
7 > |1l

== Black-box Guided
Brute Force
—— Truth Guided
-- CNN
...... 6 HL

1000 2000 3000 4000 5000
Computing Time (Min.)

0.71 [ Background in space EFP;
) Signal in space EFP;

0.61

0.51

0.41

03] |(k=2,B=0.5)

0.2

0.1

0.0 — - : - ;
-12 -10 -8 -6 -4

[Faucett, J]DT,Whiteson, PRD 2021;
using Komiske, Metodiey, |DT, JHEP 2018; C3 from Larkoski, Salam, JDT, JHEP 201 3]

log1o [EFP Observable]
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https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/1712.07124
https://arxiv.org/abs/1305.0007

Moments of Clarity

Alternative pooling operations for streamlined latent spaces

Combining per-particle features through Single learned feature with k = 4
multiplication and summation mimics four separate learned features
— a al a2 ai afg T ' ' ' ' uark/Gluon Log Angularities %  Gluon Jets
Or(P) = F((2%)p, (2" 2")p , ... (1.0, ) _MOf e e qugeuen | S AR 4 G
‘i 0.5 R =0.4,pr € [500,550] GeV - ' ’
l g 00 - iiteri qSLp:;Zg(03+y)_ B
a ';5'5—0-5— k=4L=1 -
E 2; D% (x;) E 2; @ () P (;) = o = o -
i€EP i€P ST
L 20
Sum Pooling Moment Pooling T
-3.0 &l
(Deep Sets, EFN, k=1) (k=12) 00 01 0z 03 od
Rapidity y
Same philosobhy (and scaling) as Energy Flow Networks, Log Angularity through
e philosophy (and scaling) &) . s AISUIANLY PIOUST @ (1) = ¢4 + e log(es + 1)
just new permutation-invariant pooling operations Symbolic ReGression:

[Gambhir, Osathapan, |DT, arXiv 2024; building off Komiske, Metodiey, JDT, JHEP 2019;
see also Cranmer, Kreisch, Pisani,Villaescusa-Navarro, Spergel, Ho, ICLR 2021 SimDL]

@ ‘
N “
- A

22
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Safe but Incalculable

Formal IRC safety doesn’t immediately ensure small non-perturbative corrections

Regularizing learned features to ensure controlled behavior of per-particle representations

107 Quark Jets, eTe™ — 7
Pythia 8.307, /s = 1 TeV o _ o °
e Flow N O Parton vs. Hadron Sensitivity
nergy Flow Networks
< N
g — N /S
- ~ 2 0] 6=~ 0= 7 EFN (Quark Jets)
EFN({p17 T 7pM}) =F Z qu)(pz) z 0w
: £ s 0.85
=1 £ 021 = A
e
04%?;(?:5 (),'1() ()'13 [)4'2(] ().'25 (].ES() (],335 0.40 080 |
Parton-Hadron EMD (Dimensionless)
C:.DD 077 Quark Jets
<t 0.701 Gluon Jets
" R 0.65-
N o Z 3 | Leading Jet, R = 1.0 //?//
Lipschitz Energy " & 0.60-
z S
=" S | L-EFN k Jet
Flow Networks & s s ooan Quak ) | oo -
_'% 0.04 1 oéf/ 10?
A A . A p &j,‘fj' 0.50 L . . . . .
|@(p1) — @(P2)|| < Lijp1 — p2|| ol 0.0 0.2 0.4 0.6 0.8 1.0
s Angular Exponent 3
0-0(()]1][) 0.02 0.04 0.06 0.08 0.10

Parton-Hadron EMD (Dimensionless)

[Bright-Thonney, Nachman, DT, arXiv 2023;
see also Komiske, Metodiey, DT, PRL 2019; Kitouni, Nolte, Williams, MLST 2023]
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g The Next Frontier for Interpretability

( ) I:> Foundation models identify generically useful features,
& which challenge the importance of task alignment
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From the Living Review of ML for Particle Physics

Fascinating Uncertainty Quantification

categorization! B ieeetebivy -

e Jet-images — deep learning edition [DOI]

e What is the Machine Learning? [DOI]

» CapsNets Continuing the Convolutional Quest [DOI]

e Explainable Al for ML jet taggers using expert variables and layerwise relevance propagation [DOI]
e Resurrecting bbh with kinematic shapes [DOI]

o Safety of Quark/Gluon Jet Classification

e An Exploration of Learnt Representations of W Jets

e Explaining machine-learned particle-flow reconstruction

« Creating Simple, Interpretable Anomaly Detectors for New Physics in Jet Substructure [DOI]
e Improving Parametric Neural Networks for High-Energy Physics (and Beyond) [DOI]

» Lessons on interpretable machine learning from particle physics [DOI]

» A Detailed Study of Interpretability of Deep Neural Network based Top Taggers [DOI]

Alternative answer to: ¢ Interpretability of an Interaction Network for identifying H — ijets [DOI]

“What is the goal of
interpretable ML?”

« Interpretable Machine Learning Methods Applied to Jet Background Subtraction in Heavy lon Collisions [DOI]

* |Interpretable deep learning models for the inference and classification of LHC data

[HEPML-LivingReview, moderated by Nachman, Feickert, Krause,Winterhalder]
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https://iml-wg.github.io/HEPML-LivingReview/

E.g. SHapley Additive exPlanations (SHAP)

12 variable machine learning assisted analysis for classifying 5 particle-production channels G I
[ ]
' o ) oal.
[ )
g | — - — — I |dentify features
3 — | § H NN
= [ ] [ ] [ ] [ )
> | —4 —~ > —)- ol [P d d
: riving decisions
® . . . =
ﬁ * % Q (& I of\ °
®
o—— | — g g about classification
| . | . | | [ 3
-2 0 2 -2 0 2 -2 0 2 r;u g
Pm., PHy (ppf)rl (@) 5 g
i Q
) ) ) *(5 Players: Kinematic Variables g @
Tree Explainer for SHAP QE, Outcomes: “Chances” of an event
.:% belonging to a particular channel.
! ! . . ,
Boosted Decision Trees 0 1 2 3
t t t [
Variable importance is given by the mean of the absolute
L * *‘— F Shapley values. The longer the bars for a channel, the
ke) better that variable is in distinguishing that channel from
5 w‘ <>_ [>— other channels
L
k%
(| —— || P |
o Signal Channels
© S R 9
£ ’Q ’ <% '>> Ny Yl . ..
5 Quite similar to
< C — <} Background Channels
| , , i}l | | | ,D | | Hy N2 by goal of identifying
110 120 130 140 0 1000 2000 3000 O 500 1000
M [GeV] Hr[GeV] P(GeV] low-rank features

[Grojean, Paul, Qian, Strimke, Nature Reviews Physics 2022]
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“...but what is the machine actually learning?”

To the extent that “interpretability” is about identifying features...
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“...but what is the machine actually learning?”

To the extent that “interpretability” is about identifying features...

The Next Frontier: Foundation Models

|dentify features useful for generic tasks, which get reused for specialized applications

Purposeful misalignment between initial and downstream goals
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The natural evolution
of transfer learning

Foundation Models for HEP

Symmetry Augmentation Masked Particle Modeling

Next Token Prediction

7 % Cross Entropy Loss
o \2% v v | |
——)* S BEOG & ®©
A

3 " é Masked Prediction Head
= S
\% DA ) — ) ) (@) 6]
Z

o Discretize VQ-VAE T
: . ) (frozen) Encoder )
: 2 1
&
2 '
—> x A A 4 T Positional
4 \\// Embedding

Original Jet Set of Particles Mask

[Dillon, Kasieczka, Olischlager, Plehn, Sorrenson,Vogel, SciPost 2021 ] [Heinrich, Golling, Kagan, Klein, Leigh, Osadchy, Raine, arXiv 2024]

Re-Simulation Similarity Multi-Category Classification

Inputs
?CZT;E/\ Re-simulation ?CZT;CE/\ Re-simulation
(Learned Featu res)
* * Sample one * * Sample one
Graph Building Graph Building o
& &
Graph 1 Graph
Convolutions Convolutions H
A comd Train to do

generic task

[Harris, Kagan, Krupa, Maier, Woodward, arXiv 2024] [Mikuni, Nachman, arXiv 2024]
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[Birk, Hallin, Kasieczka, arXiv 2024]

Your Next Paper

2>

Reuse to do
specific task
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https://arxiv.org/abs/2404.16091
https://arxiv.org/pdf/2108.04253
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2403.07066

Your Next Paper
Asymptotically, pre-training cannot yield improved o %

performance, but very effective in practice

Learned Features |:>

“What is the machine learning?!” T



https://arxiv.org/pdf/2108.04253
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618

Interpretable Machine Learning for Particles Physics

A
Confronting the Black Box
To benefit from machine learning advances, we must ensure
that our algorithmic choices align with our scientific goals

Case Study in Jet Classification

When possible, pursue active interpretability, where you
control the network architecture and training paradigm

g The Next Frontier for Interpretability
( ) I:> Foundation models identify generically useful features,

which challenge the importance of task alignment
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I %<&  The NSF Institute for Artificial Intelligence and
‘ Fundamental Interactions (lAlFl /ai-fai/ iaifi.org)

Artificial intelligence [ { ,'\/ Physics intelligence

as a pathway to as a pathway to

A

y A

scientific insight 4 N Al innovation

Progress driven by early care’é'r\"talent w:/t\( terdisciblinary/expertise
Consider applying to IAIFI Postdoctoral Fellowship this Fall!
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