### **Cosmic Evolution: Late Universe**

Rachel Mandelbaum (Carnegie Mellon University) May 2024

## How do cosmological measurements tell us about fundamental physics?

We want to understand the fundamental physics describing the Universe.

Current cosmological paradigm describes a broad range of cosmological observations at the ~10% level. It includes

- initial conditions created by inflation,
- dark matter & dark energy to describe expansion history and growth of structure,

which are all beyond standard model physics.



adapted from NASA/WMAP

# Using cosmic surveys as a probe of fundamental physics

The standard cosmological model in simplest form assumes:

- General Relativity (GR) is the correct theory of gravity on cosmic scales
- Dark matter is weakly interacting and cold
- Dark energy is constant in space and time
- Primordial fluctuations come from single-field, slow-roll inflation with a simple potential
- The only "light" degrees of freedom are 3 neutrino species.

Departures from any of these assumptions = major breakthrough in fundamental physics.

Observations to refine & stress-test these assumptions are essential: sharpen precision, extend to new epochs of the universe or distance scales, and/or measure new phenomena.

# Using cosmic surveys as a probe of fundamental physics

The standard cosmological model in simplest form assumes:

- General Relativity (GR) is the correct theory of gravity on cosmic
- Dark matter is weakly interacting and cold
- Dark energy is constant in space and time
- Primordial fluctuations come from single-field, slow-roll inflation
- The only "light" degrees of freedom are 3 neutrino species,

P5: Elucidate the Mysteries of Neutrinos

P5: Determine the Nature of Dark Matter

P5: Understand What

**Drives Cosmic Evolution** 

Departures from any of these assumptions = major breakthrough in fundamental physics.

Observations to refine & stress-test these assumptions are essential: sharpen precision, extend to new epochs of the universe or distance scales, and/or measure new phenomena.

# Early vs. late Universe observations are *broadly* explainable in a consistent way



#### Late Universe measurements & redshift



### Late Universe measurements & redshift



Redshift in an expanding Universe connects to distances, given a cosmological model.

Measuring spectra ("spectroscopy"):

- Precise, expensive redshift estimates
- Surveys are multiplexed (observe 100s-1000s of galaxies at once)

Measuring images in broad passbands/filters:

- Imprecise redshift estimates...
- ...but many more galaxies per unit time

Direct measurement of distance-redshift relation (e.g., "standard candles", "standard rulers")



Standard ruler: angle subtended by known scale.

- Cosmic Microwave Background (CMB): angular scale of sound horizon in early Universe.
- Baryon Acoustic Oscillations (BAO): angular scale of sound horizon imprinted in the late-time galaxy distribution.

Direct measurement of distance-redshift relation (e.g., "standard candles", "standard rulers")



Standard ruler: angle subtended by known scale.

- Cosmic Microwave Background (CMB): angular \_\_\_\_\_ scale of sound horizon in early Universe.
- Baryon Acoustic Oscillations (BAO): angular scale of sound horizon imprinted in the late-time galaxy distribution.



simulated evolution of dark matter density



Gravity drives cosmic structure growth, while dark energy slows it down.

- Massive neutrinos, inflation impart characteristic scale dependences.
- Non-linear structure: powerful test of dark energy/nature of gravity, enables astrophysical probes of dark matter; simulations essential for interpretation.





Springel et al. 2006

#### Example: measuring cosmic structure growth

Weak Lensing: deflection of photons by large-scale tidal field → coherent distortion of background galaxies' shapes (or of CMB field!) probes total foreground matter distribution.



Jessie Muir/DArchive

### Example: measuring cosmic structure growth

Weak Lensing: deflection of photons by large-scale tidal field → coherent distortion of background galaxies' shapes (or of CMB field!) probes total foreground matter distribution.

- Total is dominated by dark matter
- Per galaxy S/N << 1 → average over very large numbers of galaxies.
- Requires multi-band imaging for redshifts.

Current surveys (DES, HSC, KiDS) measure **amplitude of cosmic structure fluctuations, S**<sub>8</sub>, to ~5%, will reach 0.5% precision with Rubin.



Jessie Muir/DArchive

### Galaxy surveys and cosmological probes

Galaxy surveys are generally designed to enable precise measurements of *at least two cosmological probes*:

- Different dependence on cosmological model 
  increased constraining
  power, degeneracy breaking
- Different dependence on observational systematics and theoretical uncertainties brings robustness

#### Early vs. late Universe tensions

CMB



Takeaway: when interpreted within ACDM, early and late-time measurements of the amplitude of matter fluctuations are modestly in tension.

SNOWMASS 2021 Summer study: Abdalla et al. (2022)

#### Early vs. late Universe tensions

Takeaway: when interpreted within ACDM, early and late-time measurements of the Hubble parameter are in tension.



### Early vs. late Universe tensions

Takeaway: when interpreted within ACDM, early and late-time measurements of the Hubble parameter are in tension.



Ongoing and upcoming program of galaxy surveys will determine whether this tension is due to real physics, systematics, or statistical fluctuations.



### Spectroscopic surveys

### Current & future spectroscopic surveys

#### Informative

cross-correlations



- A sequence of spectroscopic surveys is planned
- Connected to concurrent imaging surveys in a few ways

Adapted from Snowmass CF6 report

### DESI: Dark Energy Spectroscopic Instrument – and its 40+ million galaxies and quasars



#### DESI year 1 baryon acoustic oscillations

BAO data  $\Delta \theta$  and  $\Delta z \rightarrow D_{\rm M} / r_{\rm d}$  and  $D_{\rm H} / r_{\rm d} \longrightarrow \Omega_{\rm M}$  and  $H_0 r_{\rm d}$  $\searrow D_V = \left(z D_M (z)^2 D_H (z)\right)^{1/3}$ 



### DESI year 1 baryon acoustic oscillations



### Spectroscopic survey science cases will evolve



From Kyle Dawson

## Spectroscopic survey science cases will evolve



Stage 5 Spectroscopy reaches 10X the "Primordial Figure of Merit" by mapping 10X more linear modes than DESI

These are the quantum fluctuations imprinted on galaxy maps Experimental signal-to-noise scale as √number of modes

125 Mpc/h

non-linear mode

Credits: Millenium simulation, IllustrisTNG (D. Schlegel)

### How future spectroscopic surveys expand scientific reach of these observations



Imaging surveys

#### The landscape of imaging surveys



Figure credit: Angus Wright (GCCL)

#### The landscape of imaging surveys



Figure credit: Angus Wright (GCCL)

### Structure growth measurements in current imaging surveys



Dark Energy Survey and Kilo-Degree Survey Collaboration (2023)

# Structure growth measurements in current imaging surveys



- Current survey datasets have few-% uncertainties in amplitude of matter fluctuations
- Individual survey measurements are not fully independent & have different model assumptions; are just starting to be meaningfully combined

Dark Energy Survey and Kilo-Degree Survey Collaboration (2023)

### Example from DES: probing distances

### **Supernovae** (SNIa) as standard candles:

- ~1600 photometrically classified SN with host redshifts
- DES collaboration (2024), arxiv:2401.02929
- All dataset combinations (SN+other) consistent with  $\Lambda CDM$  at  $2\sigma$



Matter density parameter  $\Omega_{m}$ 

### Example from DES: structure growth

3x2pt (weak lensing and clustering)

- Galaxies as:
  - Tracers of structures,
  - **Background** light: shape affected by structures on the light of sight.
- DES Y3: 4% precision on cosmology

### Example from DES: structure growth

3x2pt (weak lensing and clustering)

- Galaxies as:
  - Tracers of structures,
  - Background light: shape affected by structures on the light of sight.
- DES Y3: 4% precision on cosmology



### Example from DES: structure growth

- 3x2pt (weak lensing and clustering)
  - Galaxies as:
    - Tracers of structures,
    - **Background** light: shape affected by structures on the light of sight.
  - DES Y3: 4% precision on cosmology





### Looking towards the Vera C. Rubin Observatory

## Looking towards the Vera C. Rubin Observatory



### Looking towards the Vera C. Rubin Observatory



### Looking towards the Vera C. Rubin Observatory

#### The Legacy Survey of Space and Time (LSST):

- 10 years of operation.
- ~1000x repeated imaging of the visible sky to produce a 10-year long color movie
- 10 million "alerts" each night
- 30 trillion observations
- 40 billion stars, galaxies, asteroids



## Looking towards the Vera C. Rubin Observatory



LSST DESC Science Requirements Document, arXiv:1809.01669



## Looking towards the Vera C. Rubin Observatory



Deviation of dark energy EoS parameter from -1 at the present time.

LSST DESC Science Requirements Document, arXiv:1809.01669



# Fundamental physics with surveys of the late Universe

| Timeline          | 2024 | 2         | 034 |              |
|-------------------|------|-----------|-----|--------------|
| LHC               |      |           |     |              |
| LZ, XENONnT       |      |           |     | oporations   |
| NOvA/T2K          |      |           |     | operations   |
| SBN               |      |           |     |              |
| DESI/DESI-II      |      |           |     | construction |
| Belle II          |      |           |     |              |
| IceCube           |      |           |     | R&D          |
| SuperCDMS         |      |           |     |              |
| Rubin/LSST & DESC |      |           |     |              |
| Mu2e              |      |           |     |              |
| DarkSide-20k      |      |           |     |              |
| HL-LHC            |      |           |     |              |
| DUNE Phase I      |      |           |     |              |
| CMB-S4            |      |           |     |              |
| CTA               |      |           |     |              |
| G3 Dark Matter §  |      |           |     |              |
| IceCube-Gen2      |      |           |     |              |
| DUNE FD3          |      |           |     |              |
| DUNE MCND         |      |           |     |              |
| Higgs factory §   |      |           |     | 2023         |
| DUNE FD4 §        |      |           |     | 2025         |
| Spec-S5 §         |      |           |     | P5           |
| Mu2e-II           |      |           |     | -            |
| Multi-TeV §       |      | DEMONSTRA | TOR | report       |
| LIM               |      |           |     |              |
|                   |      |           |     |              |

# Fundamental physics with surveys of the late Universe

- A comprehensive survey program covers the late Universe
- Current surveys have shown great power & future promise of combining multiple cosmological probes
- There has been enormous progress in systematics mitigation and modeling/simulation development; more is needed for future surveys
- These surveys are especially powerful probes of fundamental physics when combined with early Universe data

| Timeline          | 2024    | 2034         |
|-------------------|---------|--------------|
| LHC               |         |              |
| LZ, XENONnT       |         | operations   |
| NOvA/T2K          |         | operations   |
| SBN               |         |              |
| DESI/DESI-II      |         | construction |
| Belle II          |         |              |
| IceCube           |         | R&D          |
| SuperCDMS         |         |              |
| Rubin/LSST & DESC |         |              |
| Mu2e              |         |              |
| DarkSide-20k      |         |              |
| HL-LHC            |         |              |
| DUNE Phase I      |         |              |
| CMB-S4            |         |              |
| CTA               |         |              |
| G3 Dark Matter §  |         |              |
| IceCube-Gen2      |         |              |
| DUNE FD3          |         |              |
| DUNE MCND         |         |              |
| Higgs factory §   |         | 2023         |
| DUNE FD4 §        |         | 2025         |
| Spec-S5 §         |         | P5           |
| Mu2e-II           |         |              |
| Multi-TeV §       | DEMONST | report       |
| LIM               |         |              |
|                   |         |              |

### Acknowledgements

Many thanks to individuals who shared slides/plots/material or discussed with me how cosmological measurements can teach us about fundamental physics:

Zeeshan Ahmed, Scott Dodelson, Agnès Ferté, Elisabeth Krause, Nathalie Palanque-Delabrouille, Judit Prat, David Schlegel, Chris Stubbs, Angus Wright, the Snowmass community and the 2023 P5 panel