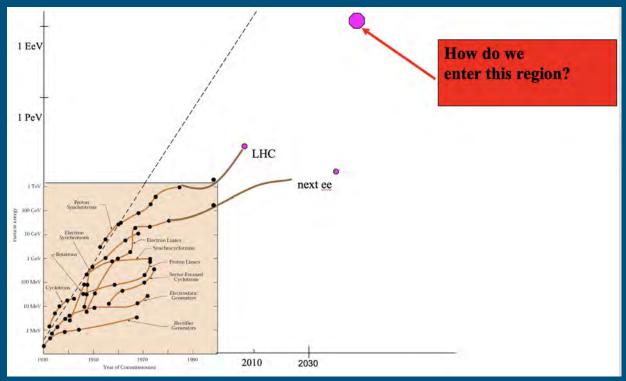
APS DPF Instrumentation Award Talk.

Observation and Applications of the Askaryan Effect

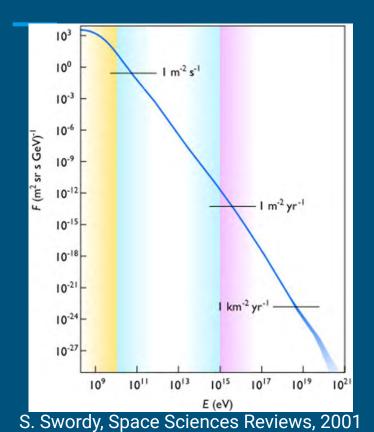
Peter Gorham (U. Hawai'i) David Saltzberg (UCLA)

DPF - PHENO 2024 Meeting, Pittsburgh May 17, 2024


Shorter version of talk presented at CPAD-2023 (SLAC)

• "Accelerator Support of Radio Detection of High Energy Particles"

- by David Saltzberg and Peter Gorham
- o https://indico.slac.stanford.edu/event/8288/contributions/7389/


- Also see the Early Career Instrumentation Award talk
 - "LArPix and LightPix: Scalable Readout for Large Cryogenic Detectors"
 - by Dan Dwyer
 - <u>https://indico.slac.stanford.edu/event/8288/contributions/7390/</u>

Accelerator Physics challenge: "The Livingston Plot"

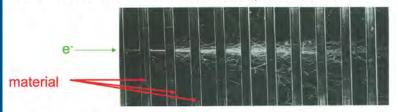
Modified from A. W. Chau and M. Tigner

Cosmic Ray physics: How to detect the rarest particles?

 Cosmic rays are as rare as 1/square kilometer /century

• No human-made detector is large enough

Using Large Natural Media: Transparent to Radio


Gurgen Askaryan (1928-1997): prominent Soviet-Armenian physicist, discoverer of self-focusing of light, pioneer in light-matter interactions, and visionary in interaction of high energy particles with matter

- Mapped it out in the 1960s:
- Lunar Regolith
 - combines two Greek words: *rhegos* (ῥῆγος),
 'blanket', and *lithos* (λίθος), 'rock'.
- Antarctic Ice
 - Up to 4km deep
- Salt "domes"
 - Uplifted & purified ancient Sea Beds

G. A. Askaryan, 1962, JETP 14, 441; 1965, JETP 21, 658, ...

The Askaryan Effect

UHE event will induce an e/γ shower:

In electron-gamma shower in matter, there will be ~20% more electrons than positrons.

Compton scattering: $\gamma + e^{-}_{(at rest)} \rightarrow \gamma + e^{-}$ Positron annihilation: $e^{+} + e^{-}_{(at rest)} \rightarrow \gamma + \gamma$

As is well known to this audience:

 $P_{Cherenkov} \propto v \Delta v$ (includes radio!)

• High Energy showers create radio.

• Assuming

- There is a charge excess of 10-30%
- Coherence factor among 10¹⁰ charges
- No plasma shielding
- No unknown unknowns.
- Had to convince the field
- Modern simulations
 - first by Francis Halzen, Enrique Zas, Todor Stanev further established effect
 - FH: "I stake my career on it!"
 - We have relied heavily on subsequent theory work by Jaime Alvarez-Muñiz and Seckel

Pioneering work by Dave Besson and others with antennas on Amanda strings and pioneering ideas by Dagkesamanskii, Gusev, & Zheleznykh, incl. at Russian Antarctic base, Vostok

The Goldstone Lunar ultra-high energy Neutrino Experiment (GLUE)

Radiotelescopes seek cosmic rays

Information technology and n hysics advance together nS rator experiments p13

wins awards p23

Peter Gorham, Chuck Naudet, Kurt Liewer then of JPL. Access to the amazing 70m Deep-Space Network (NASA/JPL/Caltech) Goldstone radio telescope and its partners

Peter came to UCLA, invited D.S. to join (with grad student Dawn Williams)

Inspired by Parkes radio telescope experiment (Hankins, Ekers, O'Sullivan MNRAS 1996)

The GLUE control room (1998-2003)

Peter: "David, you are an accelerator-based guy. Can we show we are not wasting our time?

Peter Gorham

More GLUE Folks

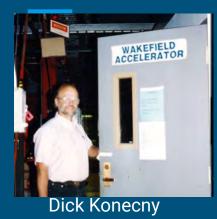
Chuck Naudet

Kurt Liewer

+an article in "American Scholar"

Moonshine and Glue

A Thirteen-Unit Guide to the Extreme Edge of Astrophysics


OLIVER MORTON

I. NANOSECONDS

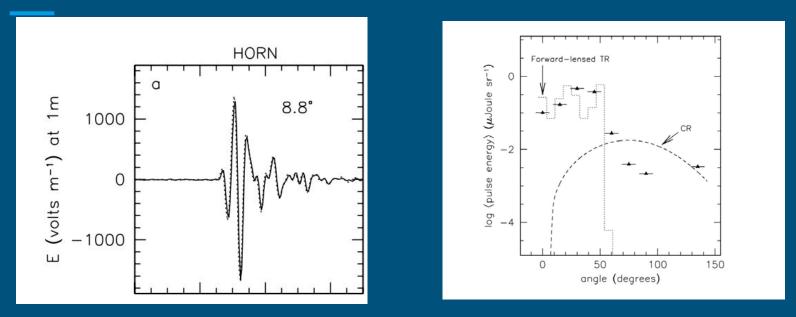
PRESS RELEASE

David Schramm Award to Writer Oliver Morton for Article on High-energy Neutrinos

The Argonne Wakefield Accelerator (AWA)

Paul Schoessow

Ordering the target:


-- "What kind of gas station do you operate?"

+ Wei Gai, John Power, Manoel Conde

 6×100 lb. bags of silica sand

AWA results

Suggestive but not yet the "slam dunk" to the community. Hard to separate Cherenkov Radiation from Transition Radiation

PG: "Always publish" AWA paper \rightarrow invitation to SLAC by Al Odian

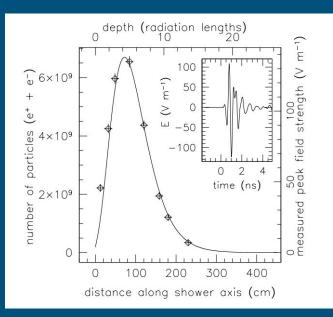
15 GeV electron beam--> 2 GeV photon beam at SLAC's Final Focus Testbeam

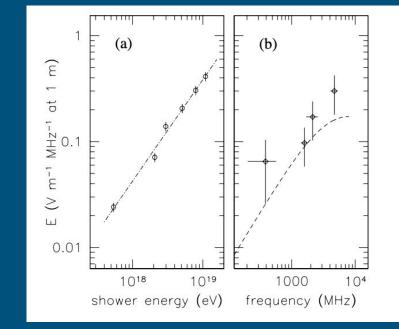
Now 4 tons of sand

"The Kitty Litter Experiment"

(wet sand does not transmit)

The amazing Dieter Walz!




"There's a cat in your target!"

Lots of volunteer help

Very clear results

Phys.Rev.Lett. 86 (2001) 2802-2805

Field of Radio Detection of High Energy Particles had a renaissance

RADHEP-2000

First International Workshop on Radio Detection of High-Energy Particles

UCLA Faculty Center University of California, Los Angeles November 16-18, 2000

RADIO DETECTION OF HIGH ENERGY PARTICLES

First International Workshop RADHEP 2000

Los Angeles California 2000

EDITORS David Saltzberg Peter Gorham

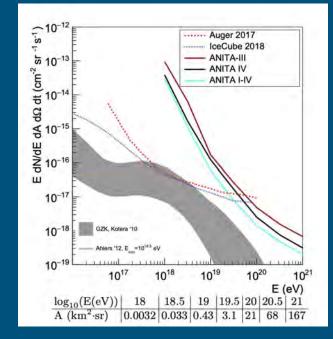
AIP CONFERENCE PROCEEDINGS # 579

Many wonderful Askaryan Experiments at SLAC

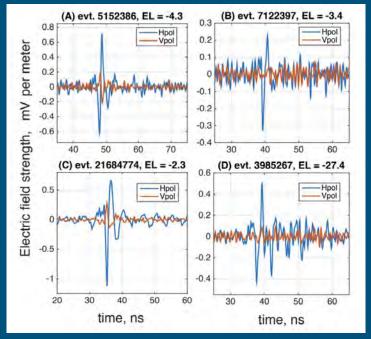
4 tons of "salt licks" + a year's supply of Morton's salt from Menlo Park Safeway

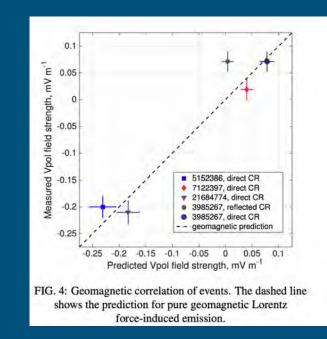
"Yes, you can iron ice." ---Abby Vieregg & Amy Connolly

Thank you, Carsten Hast!


ANITA

Many papers, e.g., Phys.Rev.D 99 (2019) 12, 122001




Christian Miki, PG, & Brian Hill

A major NASA mission, enabled by the accelerator results

Unexpected(?) events from ANITA

Clearly need to understand cosmic ray emission too.

The SLAC magnetic experiments

Phys.Rev.Lett. 116 (2016) 14, 141103

Inspired by the ANITA cosmic-ray events

Led by the young people. In particular Konstantin Belov, Katie Mulrey, Andres Romero-Wolf, Stephanie Wissel, and Anne Ziles

Now Peter & David could serve as the old(er) folks.

🗩 K. Belov 🎽

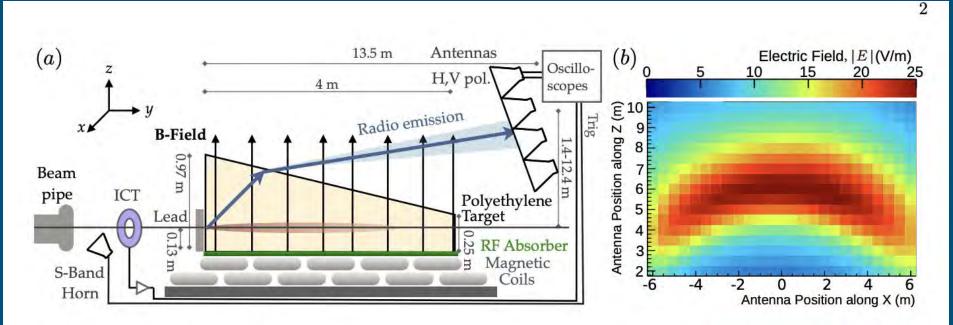
Magnets for charge splitting ... and for the Big Bang Theory

The magnetic experiments the young people take charge

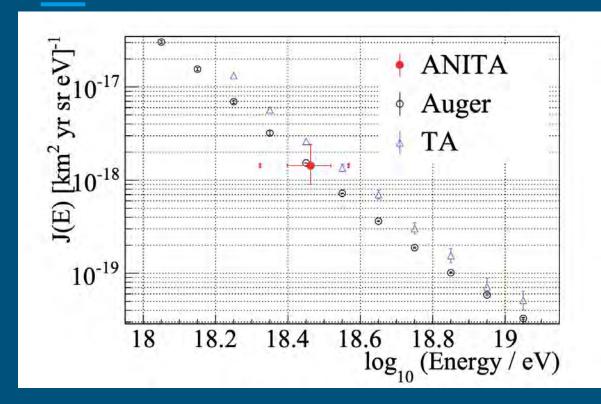
4 ton LPDE target (inclined to release release emission)

Andres Romero-Wolf and Stephanie Wissel

Katie Mulrey


credit: Steven Prohira

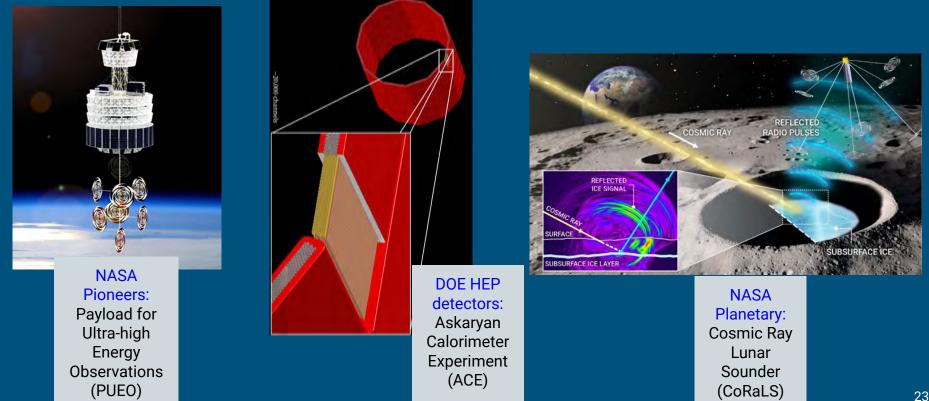
Many thanks also to Keith Jobe 20


Results

Phys.Rev.Lett. 116 (2016) 14, 141103

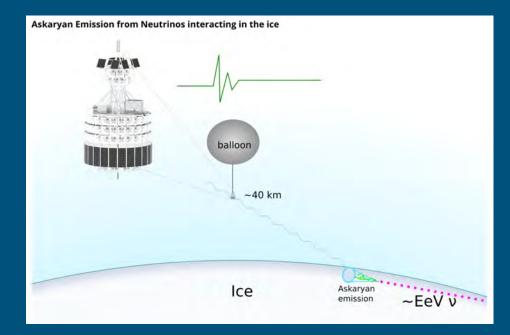
Excellent collaboration with the two theories: "ZHS" and "Endpoints". Led to mutual understanding and agreement.

The first all-radio UHE cosmic ray results

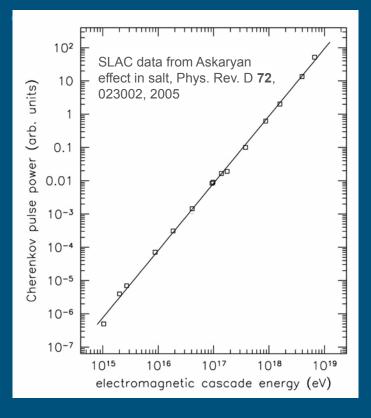


Presented by Harm Schoorlemmer at the International Cosmic Ray Conference (ICRC)

credit: Stephanie Wissel


Astropart.Phys. 77 (2016) 32-43 22

Current and future applications



PUEO

- PUEO is the successor to ANITA, led by a former Saltzberg student, Abby Vieregg (U. Chicago, P5 member)
- Payload funded by NASA Astrophysics Pioneers program, \$20M class long-duration balloon mission
- Should exceed ANITA sensitivity by > 1 order of magnitude
- Will detect EeV cosmogenic flux if not astrophysically suppressed

Can we use Askaryan signal for HEP detectors?

Phys.Rev.Accel.Beams 21 (2018) 7, 072901

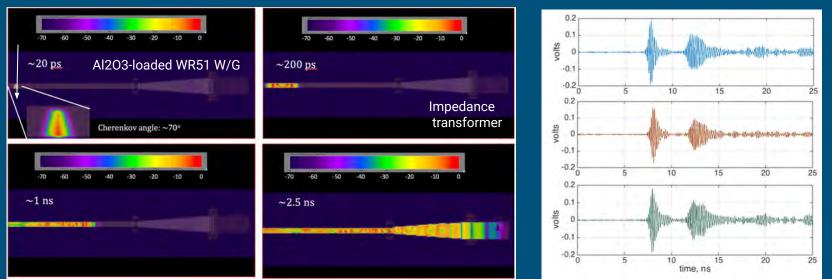
Phys.Rev.Accel.Beams 25 (2022) 10, 102901

- At extremely high energies, radio Cherenkov pulse is perfectly correlated to shower energy
- Calorimetric response extends down to the GeV range, but thermal noise prevents single-photon detection
- Suggests that we explore Askaryan effect for calorimeters with ultra-high dynamic range


Loaded waveguide microwave fields

0.035714 0.071429 0.10714 0.14286 0.17857

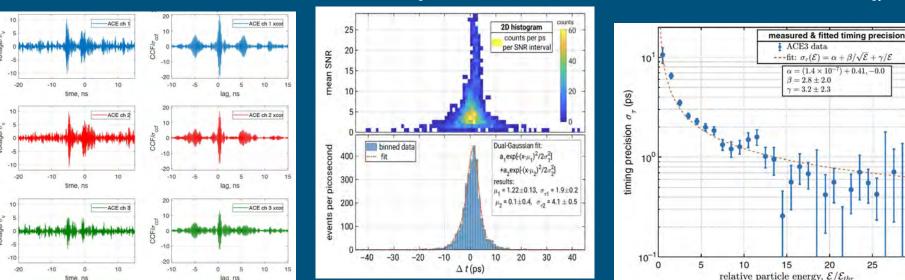
0.21429


0.25

Total E |: (uV/m)

- Single charged particle passes vertically through Al2O3-loaded WR-51 (6mm high) stacked pair at upper right
- 4-8 GHz microwave Cherenkov in TE10 waveguide mode
- Group delay vs. frequency near cutoff gives very long low-frequency tail of emission
- Risetimes an order of magnitude faster than silicon

Askaryan Calorimeter Experiment (ACE)


Alumina & copper are the detector materials \rightarrow extremely rad hard Microwave Cherenkov pulse from transiting shower can be easily timed to the picosecond level \rightarrow 5D calorimetric timing planes

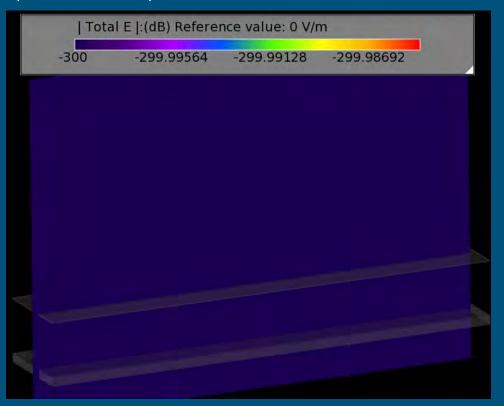
Currently funded under DOE HEP Detector R&D

Calorimeters with picosecond timing

Raw data+ thermal noise cross-correlation

timing distribution & fits

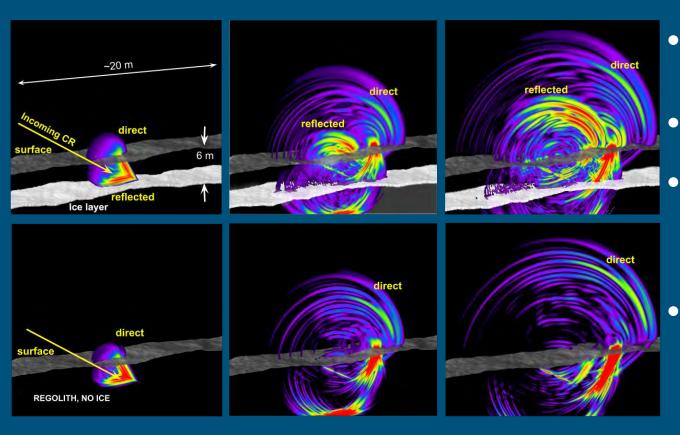
- Thermal noise (with cryo LNAs, left) sets particle/shower detection limit
 - Currently 10s to 100s of GeV (depending on LNA) \rightarrow FCC-hh applications (blue-sky!)
- Center/Right: single element dt ~10ps at least count, <2 ps at SNR~5, sub-ps at high SNR
- We are in a cryo/RF revolution (driven by quantum computing), so this could change soon!


Phys.Rev.Accel.Beams 21 (2018) 7, 072901

Phys.Rev.Accel.Beams 25 (2022) 10, 102901

time resolution vs. relative energy

30


Cosmic Ray Lunar Sounder (CoRaLS)

E.S. Costello, et al., Lunar Polar Volatiles 2022 (LPI Contrib. No. 2703)

- Cosmic rays impact the lunar regolith continuously, creating subsurface RF pulses
- These will reflect off buried ice layers if they are within ~20m of the surface in permanently shadowed polar regions, can be detected by lunar orbiter
- CoRaLS was just awarded \$3M for TRL advancement in NASA's Planetary science division
- Also a possible surface instrument for Artemis Lunar lander!

CoRaLS: realistic subsurface bistatic sims

- Huge ice deposits seen on Mercury in permanent shadows
- Why not the Moon? Buried?!
- LCROSS (Lunar Crater Observation and Sensing Satellite) impact excavated ~5m, saw water vapor
- Need subsurface radar to probe 3-30 meters for potential large ice deposits

Much debt to Gary Varner

• Gary's help and companionship through these times was essential, and a highly treasured memory.

• We are proud to join him as recipients of the APS/DPF Instrumentation Award

Conclusion:

Accelerator confirmation of Askaryan effect has had wide-ranging consequences

- Coherent Radio Cherenkov is essential to PeV-to-EeV neutrino astronomy
 - Many projects completed, current, and planned, with world-beating constraints in place
- Coherent microwave Cherenkov enables new HEP detectors for future colliders (FCC-hh as example)
 - Dynamic range and radiation hardness are outstanding characteristics
 - Picosecond timing derives from high bandwidth and high frequencies
 - Advances in cryogenics and microwave low-noise amplifiers may boost this sooner
- Coherent radio Cherenkov from cosmic rays showering in airless solar system bodies may provide probes that no other method can rival!

Final Remarks

• Thank you to the DPF for this wonderful award:

"for their experimental proof and subsequent characterization of radio emission from high-energy particle cascades, the Askaryan Effect, which has been used in searches for the highest energy astrophysical (PeV and EeV) neutrinos."

- It is really terrific to have this old work memorialized.
- The work is only possible with many junior colleagues who saw this through
- Work supported by Department of Energy (incl. early-career awards), NASA, and National Science Foundation
- And this could not have been done without the National Labs with their beamlines and dedicated scientists

