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Standard approach to nonperturbative simulations: Lattice Gauge 
Theory, which performs path integral using Monte-Carlo integration

eiS[ϕj(xi))] → e−S[ϕj(xi))]
Requires positive definite integrand, imaginary time

Can answer many static questions, but calculating 
dynamics requires real time, not imaginary time
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Instead of doing Monte-Carlo simulation of path integral, can try 
to do time evolution using Schrödinger equation

⟨X(T) |U(T, − T) |pp(−T)⟩
2

All elements in this expression in terms of fields 
Both position x and field  are continuous

ϕ(x)
ϕ(x)

Discretizing position x and digitizing field value  turn continuous (QFT) 
problem into discrete (QM) problem 

ϕ(x)

Go back to the S matrix elements mentioned before

]

10



QCD and Quantum Computing: First-principles simulation of non-perturbative physicsQCD and Quantum Computing: First-principles simulation of non-perturbative physics
Christian Bauer

Basic idea is to map the infinite Hilbert space of QFT on a finite 
dimensional HS making this a QM problem

⟨X(T) |U(T, − T) |pp(−T)⟩
2

1. Create an initial state vector at time (-T) of two proton wave packets
2. Evolve this state forward in time from to time T using the Hamiltonian 

of the full interacting field theory
3. Perform a measurement of the state 

3 basic steps:

11
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To yield finite-dimensional Hilbert space, have field configurations 
sample position and field values at discrete points
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Size of Hilbert space:

n = nV
j

19

To yield finite-dimensional Hilbert space, have field configurations 
sample position and field values at discrete points
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This complexity is completely unmanageable for classical 
computers, which explains why this has not been pursued 

Classical computer 

nL=2 10^5

nL=3 10^18

nL=4 10^43

nL=5 10^83

nL=6 10^150
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Quantum Algorithms for Quantum
Field Theories
Stephen P. Jordan,1* Keith S. M. Lee,2 John Preskill3

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central
role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering
probabilities in a massive quantum field theory with quartic self-interactions (f4 theory) in
spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles,
their energy, and the desired precision, and applies at both weak and strong coupling. In the
strong-coupling and high-precision regimes, our quantum algorithm achieves exponential
speedup over the fastest known classical algorithm.

Thequestion whether quantum field theories
can be efficiently simulated by quantum
computers was first posed by Feynman

three decades ago when he introduced the notion
of quantum computers (1). Since then, efficient
quantum algorithms for simulating the dynamics
of quantum many-body systems have been
developed theoretically (2–4) and demonstrated
experimentally (5–7). Quantum field theory, which
applies quantum mechanics to functions of space
and time, presents additional technical challenges,
because the number of degrees of freedom per
unit volume is formally infinite.

We show that quantum computers can ef-
ficiently calculate scattering probabilities in
continuum f4 theory to an arbitrary degree of pre-
cision. We have chosen f4 theory, a scalar theory
with quartic self-interactions, because it is among
the simplest interacting quantum field theories
and thus illustrates essential issues without un-
necessary complications. Our work introduces
several new techniques, including creation of the
initial state by a generalization of adiabatic state
preparation and the use of effective field theory
to analyze spatial discretization errors.

In complexity theory, the efficiency of an al-
gorithm is judged by how its computational de-
mands scale with the problem size or some other
quantity associated with the problem’s intrinsic
difficulty. An algorithm with polynomial-time
asymptotic scaling is considered to be feasible,
whereas one with superpolynomial (typically, ex-
ponential) scaling is considered infeasible. This
classification has proved to be a useful guide in
practice.

Traditional calculations of quantum field
theory scattering amplitudes rely on perturba-

tion theory—namely, a series expansion in
powers of the coupling (the coefficient of the
interaction term), which is taken to be small.
A powerful and intuitive way of organizing
this perturbative expansion is through Feyn-
man diagrams, in which the number of loops
is associated with the power of the coupling.
A reasonable measure of the computational com-
plexity of perturbative calculations is therefore
the number of Feynman diagrams, which is de-
termined by combinatorics and grows factorial-
ly with the number of loops and the number of
external particles.

If the coupling constant is insufficiently
small, the perturbation series does not yield cor-
rect results. In f4 theory, for D = 2, 3 spacetime
dimensions, by increasing the coupling l0, one
eventually reaches a quantum phase transition at
some critical coupling lc (8–10). In the parameter
space near this phase transition, perturbative
methods become unreliable; this region is re-
ferred to as the strong-coupling regime. There
are then no known feasible classical methods
for calculating scattering amplitudes, although
lattice field theory can be used to obtain static
quantities such as mass ratios. Even at weak
coupling, the perturbation series is not conver-
gent, although it is asymptotic (11–13). Includ-
ing higher-order contributions beyond a certain
point makes the approximation worse. There is
thus a maximum possible precision achievable
perturbatively.

We simulate a process in which initially well-
separated massive particles with well-defined
momenta scatter off each other. The input to our
algorithm is a list of the momenta of the in-
coming particles, and the output is a list of the
momenta of the outgoing particles produced
by the physical scattering process. At relativistic
energies, the number of outgoing particles may
differ from the number of incoming particles.
In accordance with quantum mechanics, the in-
coming momenta do not uniquely determine
the outgoing momenta, but rather a probability
distribution over possible outcomes. Upon re-
peated runs, our quantum algorithm samples

from this distribution. The asymptotic scaling
of the algorithm is given in Eq. 9 and Table 1. The
simulated scattering processes closely match ex-
periments in particle accelerators, which are the
standard tools to probe quantum field-theoretical
effects.

The issue of gauge symmetries in quantum
simulation of lattice field theories has been
addressed in (14). There is an extensive literature
on analog simulation of interacting quantum field
theories using ultracold atoms (15–26), trapped
ions (27, 28), and Josephson-junction arrays (29).
Much work has also been done on analog sim-
ulation of special-relativistic quantum mechani-
cal effects such as zitterbewegung and the Klein
paradox, as well as general-relativistic quantum
effects such as Hawking radiation [for recent
reviews, see (30, 31)]. Our work, in contrast to
these studies, addresses digital quantum sim-
ulation, with explicit consideration of convergence
to the continuum limit and efficient preparation of
wave packet states for the computation of dy-
namical quantities such as scattering probabil-
ities. Our analysis includes error estimates of all
parts of our algorithm.

Representing fields with qubits. Although
quantum field theory is typically expressed in
terms of Lagrangians and within the interaction
picture, our algorithm is more naturally described
in the formalism of Hamiltonians and within
the Schrödinger picture. We start by defining a
lattice f4 theory and subsequently address con-
vergence to the continuum theory. (In D = 4,
the continuum limit is believed to be the free the-
ory. Nonetheless, because the coupling shrinks
only logarithmically, scattering processes for
particles with small momenta in lattice units
are interesting to compute.) Let W ¼ aZd

%L, that
is, an %L" :::" %L lattice in d = D − 1 spatial
dimensions with periodic boundary conditions
and lattice spacing a. The number of lattice
sites is V ¼ %Ld . For each x ∈ Ω, let f(x) be a
continuous, real degree of freedom—interpreted
as the field at x—and let p(x) be the correspond-
ing canonically conjugate variable. In canonical
quantization, these degrees of freedom are pro-
moted to Hermitian operators with the commu-
tation relation

½f(x), p(y)$ ¼ ia−ddx,y1 ð1Þ

We use units with ħ = c = 1. f4 theory on the
lattice Ω is defined by the Hamiltonian

H ¼ ∑
x∈W

ad
1
2
p(x)2 þ 1

2
(∇af)2(x) þ

!

1
2
m2

0f(x)
2 þ l0

4!
f(x)4

"
ð2Þ

where ∇af denotes a discretized derivative (that
is, a finite-difference operator) and m0 is the
particle mass of the corresponding noninteract-
ing (l0 = 0) theory.
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Quantum computers put first principles calculations of scattering 
cross sections (and other observables) in realm of possibility

Classical computer Quantum Computer

nL=2 10^5 10^1

nL=3 10^18 10^1

nL=4 10^43 10^2

nL=5 10^83 10^2

nL=6 10^150 10^2
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There are many energy scales that are present in LHC events, 
and all need to be accounted for in an adequate description

Energy of colliding protons

Scale of electroweak gauge bosons

Mass of the proton

Mass of the pion, the lightest hadron
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1013
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Field configurations 
corresonding to given 

energy have wavelength

 l ∼ 1/E

ELHC

mW

mp

mπ108

109

1010

1011

1012

1013

28

There are many energy scales that are present in LHC events, 
and all need to be accounted for in an adequate description



QCD and Quantum Computing: First-principles simulation of non-perturbative physicsQCD and Quantum Computing: First-principles simulation of non-perturbative physics
Christian Bauer

The largest and smallest energy scales set maximum and minimum 
wavelength of field configurations that need to be considered
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Perturbation 
Theory

Quantum 
Simulaton
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Remaining question: What exactly do we compute 
in perturbation theory and using quantum 

computing?
Answer requires effective field theory 

(SCET for collider physics)
1. Use SCET to write observable in terms of matrix 

elements of long distance operators and 
matching coefficients

2. Use perturbation theory to compute matching 
coefficients

3. Use quantum computer to compute long distance 
matrix elements
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Simulating Collider Physics on Quantum Computers Using Effective Field Theories

Christian W. Bauer * and Benjamin Nachman †

Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Marat Freytsis‡

NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
and Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
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Simulating the full dynamics of a quantum field theory over a wide range of energies requires
exceptionally large quantum computing resources. Yet for many observables in particle physics,
perturbative techniques are sufficient to accurately model all but a constrained range of energies within
the validity of the theory. We demonstrate that effective field theories (EFTs) provide an efficient
mechanism to separate the high energy dynamics that is easily calculated by traditional perturbation theory
from the dynamics at low energy and show how quantum algorithms can be used to simulate the dynamics
of the low energy EFT from first principles. As an explicit example we calculate the expectation values of
vacuum-to-vacuum and vacuum-to-one-particle transitions in the presence of a time-ordered product of two
Wilson lines in scalar field theory, an object closely related to those arising in EFTs of the standard model
of particle physics. Calculations are performed using simulations of a quantum computer as well as
measurements using the IBMQ Manhattan machine.

DOI: 10.1103/PhysRevLett.127.212001

It is well known that quantum computers can in principle
simulate the time evolution of quantum field theories [1].
The main technique involves disretizing the spatial degrees
of freedom by introducing a lattice [2–4], and digitizing the
field values at a given lattice point [5–13]. This turns the
uncountably infinite dimensional Hilbert space of standard
quantum field theories into a finite dimensional Hilbert
space of dimension

nH ¼ nðN
dÞ

ϕ ; ð1Þ

where nϕ denotes the dimensionality of the Hilbert space
for a given lattice point, N is the total number of lattice
points in each spatial direction, and d represents the number
of spatial dimensions. The physical volume of the lattice is
determined by the distance between adjacent lattice points
δx in each direction and is given by

V ¼ ðNδxÞd ≡ Ld: ð2Þ

The total number of qubits required for such a simulation is
given by

nQ ¼ Oðlog2nHÞ ¼ OðNdlog2nϕÞ: ð3Þ

The discretization and finite volume of space introduce
upper and lower cutoffs to the energies E over which the
resulting lattice field theory is a good approximation for the
continuum. In particular, one finds

1

Nδx
≲ E≲ 1

δx
; ð4Þ

which implies that the range of energies that can be
described is directly proportional to the number of lattice
sites per dimension. In principle, to have access to the full
dynamics of the Large Hadron Collinder (LHC), one would
need to describe the energy range between Oð10 MeVÞ
(the smallest resolvable transverse momentum between
hadrons) and 7 TeV (the beam energy of the LHC). To
fully capture this energy range would require a lattice with
Oð106Þ lattice points in each dimension, and more than
1018 qubits to reproduce the resulting physical system.
Even if one does not require the full energy range up to the
LHC center-of-mass energy, the number of qubits required
for a full simulation will clearly remain beyond the realm of
feasibility for a long time to come.
For many observables of interest at the LHC, physics at

short distances is reliably computed in fixed order pertur-
bation theory, and high precision can be reached with
existing techniques. Physics at lower energies introduces
new significant challenges. Asymptotic freedom [14,15]
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FIG. 1. Result of transition rates from the valuum of the
Wilson line for 3 lattice sites and nQ = 2 qubits per site
to the vacuum and the lowest-lying single excited state. The
solid lines shows the analytical result with no field digitization
while the dashed lines represents the result from a quantum
simulator of our circuit. The black data points show the re-
sult from the 65-qubit IBMQ Manhattan quantum computer,
corrected both for readout errors and CNOT gate errors. We
only show result from the Manhattan computer for X = ⌦,
since the circuit to measure the excited state was too deep to
give reliable results.

of gates, although the resulting circuits are known. For
example, even for 3 lattice sites the standard implemen-
tation of a single Trotter step of our Hamiltonian re-
quires 60 CNOT gates. We have applied both readout
error mitigation as described in [54] as well as CNOT
gate noise mitigation [55]. For more details, including
References [56–77], see the Supplemental Materials. One
can see that the digitized result with 2 qubits per lattice
site di↵ers from the analytic calculation by up to 10%.
This would be reduced to at most 1.5% by adding just a
single qubit per lattice site, since the resulting digitiza-
tion errors fall exponentially with the number of qubits.
The quantum computer reproduces the simulated result
to about 5% accuracy.

In conclusion, EFT are well known to be able to
describe the low energy dynamics of field theories
and, through short distance, perturbatively computable
matching coe�cients, can be used to describe the dynam-
ics of a full underlying quantum field theory. We have
argued that the dynamics of a low energy EFT can be
simulated with significantly smaller quantum resources
than the dynamics of the corresponding full theory. In
SCET the interactions of highly energetic particles with
soft particles of low energy are described through op-
erators containing Wilson lines, and we have shown in
detail how the dynamics of an analogous scalar soft the-
ory can be described using quantum algorithms. Using
Wilson lines of free scalar fields in (1+1) dimension, we
have computed the simplest matrix elements in this soft
theory, namely the transition matrix elements from the

vacuum to itself and the lowest-lying excited states of two
Wilson lines in opposite directions, using 3 lattice sites.
We have compared the computations on a quantum com-
puter to analytical results that can be obtained for this
simple theory. Using only 2 qubits per lattice we obtain
results within 10% of the analytical result, and by using
noise-mitigation techniques, uncertainties due to running
on present-day hardware can be reduced to about 5%.
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There are many different parts of the theory that need to be 
worked out when formulating a Hamiltonian lattice gauge theory

1. How to formulate a lattice theory that reproduces SU(3) in the limit of 
vanishing lattice spacing

• Whether to add any additional expansions in the theory 

2. What basis to choose for the Hilbert space

3. How to implement gauge invariance

4. How to truncate the theory (how to choose a discrete set of field values)

Goal is a Hamiltonian Lattice theory that reproduces QCD in continuum limit
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Maintaining local interactions in the quantum simulation of gauge field theories relegates most

states in the Hilbert space to be unphysical—theoretically benign, but experimentally di�cult to

avoid. Reformulations of the gauge fields can modify the ratio of physical to gauge-variant states of-

ten through classically preprocessing the Hilbert space and modifying the representation of the field

on qubit degrees of freedom. This paper considers the implications of representing SU(3) Yang-Mills

gauge theory on a lattice of irreducible representations in both a global basis of projected global

quantum numbers and a local basis in which controlled-plaquette operators support e�cient time

evolution. Classically integrating over the internal gauge space at each vertex (e.g., color isospin

and color hypercharge) significantly reduces both the qubit requirements and the dimensionality of

the unphysical Hilbert space. Initiating tuning procedures that may inform future calculations at

scale, the time evolution of one- and two-plaquettes are implemented on one of IBM’s supercon-

ducting quantum devices, and early benchmark quantities are identified. The potential advantages

of qudit environments, with either constrained 2D hexagonal or 1D nearest-neighbor internal state

connectivity, are discussed for future large-scale calculations.
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Part 1: What lattice Hamiltonian to use in the without truncation.

3

and group space decimation [19, 25, 36, 79], through mesh digitization [80], using light-front formulations of lattice

field theory [81, 82], and in hybrid and analog approaches leveraging natural properties of trapped ions or ultracold

atoms in optical lattices [15, 17, 18, 22, 33, 83]. These strategies are important as optimal design is likely to depend

on the physical properties of specific quantum architectures, which continue to be developed. Furthermore, this range

of formulations can provide robustness in evaluating systematic uncertainties (from the performance of quantum

hardware and algorithms) for observables that are inaccessible to classical computation.

In this paper, the multiplet basis utilized in the work of Byrnes and Yamamoto [13] is integrated over the local

gauge space at each vertex of the lattice, reducing the Hilbert space describing the system down to the local SU(N)

irreducible representations below a chosen truncation. This approach has been previously used to explore (1+1)-dim

SU(2) lattice gauge theory [26], further implemented for a 1-dim chain of plaquettes in SU(2) lattice gauge theory [37],

and is here developed for application to SU(3) lattice gauge theory.

Quantum simulations of Yang-Mills theories and QCD are in their infancy. Precision calculations of quantities that

can be directly compared with experiment are far in the future, and are expected to require major advances in quantum

devices, algorithms and formalism. However, in starting along the path to this ultimate objective, explorations of

simple systems, establishing informative benchmarks, analyzing features of profitable mappings, observing natural

structures, quantifying truncation sensitivity, and identifying amenable architectures are all important steps. We

focus on understanding the behavior of simple systems, one- and two-plaquette systems, with regard to coupling,

truncations in color space, the scaling of global and local basis states and operators, and the mapping of color irreps

onto qubits, qutrits and qudits. We perform quantum simulations of low-truncation one- and two-plaquette systems

using IBM’s QExperience superconducting quantum devices. Further, we examine a framework (that appears to scale

amiably) for the use of controlled-plaquette operators on qudit systems as a way to perform simulations of SU(3)

Yang-Mills gauge field theory.

II. THE SU(3) YANG-MILLS HAMILTONIAN

Quantum simulations of Yang-Mills gauge theory can be performed by discretizing the gauge fields in the spatial

directions using a cubic lattice of sites and defining link variables connecting adjacent sites of this underlying grid.

These link variables are parallel transporters that connect, for SU(3), color vectors at one site to those at an adjacent

site. The Hamiltonian is a sum over the chromo-electric and chromo-magnetic contributions, as first discussed by

Kogut and Susskind [58],

Ĥ =
g2

2ad�2

X

b,links

|Ê(b)
|
2 +

1

2a4�dg2

X

plaquettes

h
6 � ⇤̂(x) � ⇤̂†(x)

i
, (1)

where g is the strong coupling constant, a is the lattice spacing between adjacent sites, and d is the number of

spatial dimensions. In the irrep basis of tensor indices that are labeled by (p, q), the number of (fundamental,

anti-fundamental) indices with total dimension

dim(p, q) =
(p+ 1)(q + 1)(p+ q + 2)

2
, (2)

the electric Hamiltonian is diagonal with eigenvalues determined by the Casimir operator,

X

b

|Ê(b)
|
2
|p, qi =

p2 + q2 + pq + 3p+ 3q

3
|p, qi . (3)

The plaquette operator, ⇤̂(x), is defined as

⇤̂(x) = Tr
h
Û3(x,x+ aµ) Û3(x+ aµ,x+ aµ+ a⌫) Û3(x+ aµ+ a⌫,x+ a⌫) Û3(x+ a⌫,x)

i
, (4)

In this case the Kogut-Susskind Hamiltonian is used
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Part 2: How to represent basis to choose for Hilbert space

In this case a basis in representation of SU(3) was chosen in which electric 
Hamiltonian is diagonal

3

and group space decimation [19, 25, 36, 79], through mesh digitization [80], using light-front formulations of lattice

field theory [81, 82], and in hybrid and analog approaches leveraging natural properties of trapped ions or ultracold

atoms in optical lattices [15, 17, 18, 22, 33, 83]. These strategies are important as optimal design is likely to depend

on the physical properties of specific quantum architectures, which continue to be developed. Furthermore, this range

of formulations can provide robustness in evaluating systematic uncertainties (from the performance of quantum

hardware and algorithms) for observables that are inaccessible to classical computation.

In this paper, the multiplet basis utilized in the work of Byrnes and Yamamoto [13] is integrated over the local

gauge space at each vertex of the lattice, reducing the Hilbert space describing the system down to the local SU(N)

irreducible representations below a chosen truncation. This approach has been previously used to explore (1+1)-dim

SU(2) lattice gauge theory [26], further implemented for a 1-dim chain of plaquettes in SU(2) lattice gauge theory [37],

and is here developed for application to SU(3) lattice gauge theory.

Quantum simulations of Yang-Mills theories and QCD are in their infancy. Precision calculations of quantities that

can be directly compared with experiment are far in the future, and are expected to require major advances in quantum

devices, algorithms and formalism. However, in starting along the path to this ultimate objective, explorations of

simple systems, establishing informative benchmarks, analyzing features of profitable mappings, observing natural

structures, quantifying truncation sensitivity, and identifying amenable architectures are all important steps. We

focus on understanding the behavior of simple systems, one- and two-plaquette systems, with regard to coupling,

truncations in color space, the scaling of global and local basis states and operators, and the mapping of color irreps

onto qubits, qutrits and qudits. We perform quantum simulations of low-truncation one- and two-plaquette systems

using IBM’s QExperience superconducting quantum devices. Further, we examine a framework (that appears to scale

amiably) for the use of controlled-plaquette operators on qudit systems as a way to perform simulations of SU(3)

Yang-Mills gauge field theory.

II. THE SU(3) YANG-MILLS HAMILTONIAN

Quantum simulations of Yang-Mills gauge theory can be performed by discretizing the gauge fields in the spatial

directions using a cubic lattice of sites and defining link variables connecting adjacent sites of this underlying grid.

These link variables are parallel transporters that connect, for SU(3), color vectors at one site to those at an adjacent

site. The Hamiltonian is a sum over the chromo-electric and chromo-magnetic contributions, as first discussed by

Kogut and Susskind [58],
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In this case gauge invariance is implemented by requiring that representations 
satisfy Gauss’ law, therefore putting restrictions on each plaquette
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where Û3(x,y) are 3⇥ 3 unitary matrices, and µ and ⌫ are unit vectors that define the orientation of the plaquette.

In the electric basis, links are defined by states of the color irrep to which they belong, R, and the (uncorrelated)

orientations in the two color spaces they connect, ↵ and �, |R,↵,�i. The electric contribution from each link

is proportional to the Casimir operator acting on the link without changing the color irrep, while the plaquette

operators, ⇤̂+ ⇤̂†, add color fluxes to the links in the plaquette, 3 and 3, which change the irrep of each link, subject

to Gauss’s law. Constraints imposed to define physically allowed states of the system are included through additional

conditions. In the absence of external color charges and quarks, Gauss’s law is satisfied by the product of link irreps

at each vertex combining to a color singlet.

A. The Plaquette Operator

In the standard formulation of Hamiltonian lattice gauge theory [58], wavefunctions carry Clebsch-Gordon (CG)

factors at each vertex with the e↵ect of enforcing local gauge invariance. Using the notation of Fig. 1, an example of

FIG. 1. Following an arrow convention generalizable to higher dimension, the above link labels will be employed. Indices local
to one end of each link represent a set of indices characterizing the local gauge space e.g., the color spin and color hypercharge
in SU(3).

the local vertex structure is (upper-left vertex)
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hC1, b,Rt, g|Q`, di� |C1, a, bi|Q`, c, di|Rt, g, hi , (5)

where the sum is over the quantum numbers internal to the links at the vertex. The subscript, �, on the SU(3)

CG coe�cient indexes the multiplicity of combined irreps achieved through tensor contractions. An example of this

multiplicity is in the product 8 ⌦ 8 that can be combined to produce the 8-dimensional irrep in two distinct ways,

symmetric and antisymmetric contractions, with distinct CGs. These multiplicities mildly complicate the calculation

of plaquette matrix elements, but are otherwise benign with respect to the structure of the quantum simulation.

With a truncation including only up to the single-index irreps, the vertices that contain a singlet (and are thus

gauge invariant) are 1 ⌦ 1 ⌦ 1,1 ⌦ 3 ⌦ 3,3 ⌦ 3 ⌦ 3, and those related under global conjugation and permutation

symmetries. With a truncation including the 8 irrep, described by the two index tensor with one upper and one lower

index, the number of gauge invariant vertices rises to include the 1⌦ 8⌦ 8,3⌦ 3⌦ 8 and 8⌦ 8⌦ 8.

A key role of the vertex CGs is to allow a localization of the plaquette operator, determining the magnetic Hamil-

tonian, as the minimal contracted loop of local link operators (directionality as in Fig. 1),
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where r indicates the representation of the link operator, the a(b) label states within an irrep in the left(right) spaces,
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where r indicates the representation of the link operator, the a(b) label states within an irrep in the left(right) spaces,
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Part 4: How to truncate the theory

6

operator controlled on the quantum states of the four neighboring links.

B. Connectivity in Multiplet Space

When designing operations for the implementation of dynamical processes within a Hilbert space, it is helpful to

understand the natural connectivity between states. This basis-dependent feature will a↵ect the e�ciency of digital

formulations of time evolution as well as their ease of implementation on quantum architectures with limited con-

nectivity. Naturally, designing quantum hardware with connectivity matching that of the field Hilbert space (or vice

versa) is expected to be advantageous.

When an SU(2) link operator in the fundamental representation acts, it is capable of raising or lowering the

total angular momentum j value of the link state by ±
1
2 . When the vector components of the link Hilbert space

are classically incorporated into the matrix elements of the plaquette operator, as discussed above, these j values

are su�cient to describe the state of the local link degree of freedom. Thus, in a basis of multiplets, the relevant

connectivity of quantum states within an SU(2) gauge link is in the form of a simple ladder, as shown in Fig. 2. While

SU(2): · · ·

SU(3):

0

1

2

3

4

0

1

2

3

4

p q

p q

+1

p q

-1

+1

p q

-1

or

transitions

FIG. 2. Connectivity diagrams for the low-Casimir irreps in SU(2) and SU(3) gauge theory upon application of the plaquette
operator. In SU(2), connections are bidirectional. In SU(3), connections between multiplets are directional, shown here for the
application of the fundamental representation. The link Hilbert space can be captured through the connectivity of a single
constrained hexagonal lattice of quantum states (lower-left panel) or through a pair of correlated one dimensional lattices
(lower-right panel).

the coe�cients associated with connections between these states depend on the surrounding links and the associated

local CG factors, states interact with maximally two neighboring states.

For SU(3) lattice gauge theory in the multiplet basis, the connectivity among states within the local gauge link

Hilbert space is only slightly more elaborate, and is well known from group theory. For the link operator in the 3 or

3, the tensor indices become,

(p, q)⌦ (1, 0) = (p+ 1, q)� (p� 1, q + 1)� (p, q � 1) ,

(p, q)⌦ (0, 1) = (p, q + 1)� (p+ 1, q � 1)� (p� 1, q) . (11)

In this case theory is truncated by the maximum allowed p and q values of the 
representation at each link

44



QCD and Quantum Computing: First-principles simulation of non-perturbative physicsQCD and Quantum Computing: First-principles simulation of non-perturbative physics
Christian Bauer

All details in place  theoretical framework. Now needs to work 
out efficient quantum algorithms and get results from hardware

⇒
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FIG. 10. Two plaquettes with periodic boundary conditions and an arrow convention amenable to infinite extension in the
two-dimensional plane. Indices local to each end of each link characterize states in SU(3) e.g., the color isospin and hypercharge
indices.

previous algorithms, for example, Ref. [13].

Similar to the methods employed for the one-plaquette system, Gauss’s law can be explicitly satisfied in the global

wavefunctions by construction of the basis states. Using the dimensionality of the color irrep of each link, as shown in

Fig. 10, the basis states for the two-plaquette system are written as |�(R1,Q1,R2,R3,Q2,R4)i. The gauge invariant

lattice wavefunction for this two-plaquette system, as discussed in greater generality in Appendix A, is

|�(R1,Q1,R2,R3,Q2,R4)i =
1

dim(Q1) dim(Q2)

X

all

|R1, a, bi|Q1, c, di|R2, e, fi|R3, g, hi|Q2, i, ji|R4, k, `i

hR3, h, R̄1, a|Q̄2, ji�312 hR1, b, R̄3, g|Q̄1, di�131

hR4, `, R̄2, e|Q2, ii�422 hR2, f, R̄4, k|Q1, ci�241 , (34)

where |R, a, bi is a link-state in the electric basis and hRi, f,Rj , k|Qk, ci�ijk are SU(3) CG coe�cients.

The global wavefunctions of the two-plaquette system are formed from combinations of these basis states, consistent

with the global symmetries of the system such as: color-parity symmetry resulting from the sum of ⇤ + ⇤† in the

Hamiltonian, e.g., {Ri,Qi} $ {Ri,Qi}, translation invariance, and reflection symmetry. These symmetries lead to a

natural block-diagonalization of the Hamiltonian in these projected bases. Quantum numbers may be assigned to the

states in each block, ±1 for each of the symmetries in the case of two-plaquettes. In this section, we consider a global

basis in which dynamical quantum states are mapped to symmetry-projected configurations of the full two-plaquette

lattice. Two related local truncations in color space are used to explore the convergence of both local and global

truncations.

A. Two-Plaquette: {1,3,3} Local Truncation

In limiting the local link basis to color irreps {1,3,3} for the two-plaquette system without constraints and symmetries,

there are 36 independent basis states. Imposing Gauss’s law at each vertex reduces this number down to 27. Further

restricting to global singlet states, as is the strong coupling vacuum and preserved by the Hamiltonian, the dynamical

Hilbert space becomes 9 dimensional, which decomposes into sectors of dimensions (4, 2, 2, 1) under the discrete

symmetries of color parity and spatial translation. Focusing on the sector that contains the trivial vacuum, the basis

states in the ++ sector are,

| (133;++)
1 i = |�(1,1,1,1,1,1)i

| (133;++)
2 i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤

| (133;++)
3 i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤

Paper presented above was first (and essentially still only one) that could do real 
SU(3) calculations on quantum hardware

Results could be obtained on a 3x2 lattice
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circuit in Eq. (19), and the third can be implemented with the following circuit relation

ei(↵Ẑ⌦X̂+�X̂⌦Ẑ) =
H • H ei↵Ẑ H • H

ei�Ẑ
. (43)

The results of performing first order Trotter time steps with g = 1 beginning in the electric vacuum are shown in

Fig. 12. Two middle qubits were used to store the state of the system and, when the measurement error mitigation

is implemented through voting, the remaining three qubits were used to inform the post-selection described in Sec-

tion III B 1. As the results show, three Trotter steps are capable of reproducing the first maximum and minimum

in the evolution of the electric energy and calculations on the Athens quantum processor are in agreement with the

exact calculation.
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FIG. 12. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric
field (right panel) of the two plaquette system in the color parity basis truncated locally at 3 and 3. Evolution is a 1st-order
Trotterization of the Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s
Athens quantum processor, with systematic and statistical uncertainties combined in quadrature.

B. Two-Plaquette: {1,3,3,8} Local Truncation

To further explore global wavefunctions and also to demonstrate a further complexity in such calculations, the dis-

cussion in Subsection IVA is here extended to include the 8 in the local link basis. The construction involves

an expanded basis that requires considering non-trivial multiplicities in the products of irreps, in particular in

8 ⌦ 8 = 27 � 10 � 10 � 8 � 8 � 1. Of the 46 states in this local basis, 109 of them satisfy Gauss’s law. Pro-

jecting further to the global color singlet states—the global color charge being a quantum number conserved by the

Hamiltonian—there are 41 distinct physical configurations potentially connected to the strong coupling vacuum.

These physical and global color singlet states combine into states with definite transformation properties under the

discrete symmetries of color parity, translation, and reflection, which is no longer redundant in this larger basis as

3 ⌦ 3 = 8 � 1 leads to configurations that can be odd under reflection. Focusing only on the + + + sector, the 15

independent states are,

| (1338;+++)
1 i = |�(1,1,1,1,1,1)i ,

| (1338;+++)
2a i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤
,

| (1338;+++)
2b i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤
,

| (1338;+++)
3 i =

1
p
2
[ |�(8,1,1,8,1,1)i+ |�(1,1,8,1,1,8)i ] ,
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We very recently realized that adding an additional expansion 
can lead to dramatic simplifications in the lattice theory

1. How to formulate a lattice theory that reproduces SU(3) in the limit 
of vanishing lattice spacing

• Whether to add any additional expansions in the theory 

2. What basis to choose for the Hilbert space

3. How to implement gauge invariance

4. How to truncate the theory (how to choose a discrete set of field 
values)

5. …
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A  expansion in QCD is quite standard in many classical 
applications. Can it help in quantum simulation?

1/Nc

Gives dramatic simplifications on the size of the allowed Hilbert space and 
dramatically simplifies interactions 

Results obtained on 8x8 lattice (25 times more plaquettes than previous best)
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I believe that this opens the door for quantum simulation 
of QCD through a systematic expansion, where higher 
order effects can be included as computing hardware 

improves
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Quantum computers open the door to perform 
currenty unattainable simulations

Using Effective Field Theories takes best 
advantage of quantum hardware

This will open door for exploring the most 
fundamental forces of the universe
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