

PIONEER: a next-generation rare pion decay experiment

Yousen Zhang on behalf of PIONEER collaboration

13 May 2024

Lepton flavor symmetry and violation

Standard model (SM): not a full story

Lepton flavor universality (LFU) – an assumed symmetry in SM

- Universal coupling with gauge interaction among leptons $g_e = g_\mu = g_\tau$
- Violations imply new physics

Rare
$$\pi^+$$
 decay $R_{e/\mu}^{\pi} = \frac{\Gamma(\pi \rightarrow e\nu(\gamma))}{\Gamma(\pi \rightarrow \mu\nu(\gamma))}$ is key observable to LFU

Why
$$\pi^+(u\overline{d}) \rightarrow l^+\nu$$
?

Most stringent μ/e test $\mathcal{L}_{CC} = A_{\ell}[\bar{u}\gamma^{\mu}P_{L}d][\bar{\nu}_{\ell}\gamma_{\mu}P_{L}\ell]_{\ell}$ $R_{e/\mu} (\exp) = 1.2327(23) \times 10^{-4} \quad \left(\frac{A_{\mu}}{A_{e}}\right)_{R_{e/\mu}} = 1.0010(9)$

- Highly helicity-suppressed, $R^{\pi}_{e/\mu} \propto m^2_e/m^2_{\mu}$
- Corrections to tree-level from high order quantum effects or high-energy new physics
 - Enhanced sensitivity to pseudo-scalar interaction $\propto \frac{M_{\pi}^2}{m_e(m_u+m_d)}$
 - Modified *Wlv* coupling
 - •

. . .

Quark mixing and pion decays

$$\frac{-g}{\sqrt{2}}(\overline{u_L}, \overline{c_L}, \overline{t_L})\gamma^{\mu} W^{+}_{\mu} V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{h.c.}, \qquad V_{\text{CKM}} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}.$$

• Unitary implies $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 (\sim 2 \times 10^{-5}) = 1$

$$|V_{ud}|^2 + |V_{us}|^2 - 1 = (-19.5 \pm 5.3) \times 10^{-4}$$

- Modified $Wl\nu$ coupling leads to $V_{ud}^{\beta} = V_{ud}^{\mathcal{L}}(1 \epsilon_{\mu\mu})$
 - $R_{e/\mu}^{\pi}$ sensitive to $(1 \epsilon_{\mu\mu} + \epsilon_{ee})$

• $R_{\beta\pi} = \frac{\Gamma(\pi^+ \to \pi^0 e^+ v(\gamma))}{\Gamma(total)} \sim (10^{-8})$ theoretically cleanest for $|V_{ud}| = 0.9739(28)_{exp}(1)_{th}$ PRD 101 (2020) 091301(R)

$$\frac{\Gamma(\pi^+ \to \pi^0 e^+ \nu)}{\Gamma(\text{Total})} = 1.036 \pm 0.004(\text{stat}) \pm 0.004(\text{syst}) \pm 0.003(\pi \to e\nu) \times 10^{-8}$$
PRL 93 (2004) 181803

Challenges and opportunities

 $R_{e/\mu}(\text{SM}) = 1.23524(015) \times 10^{-4}$

 $R_{e/\mu}(\exp) = 1.23270(230) \times 10^{-4}$

- For $\delta R^{\pi}_{e/\mu} \sim O(10^{-4})$, given $R^{\pi}_{e/\mu} \sim 1 \times 10^{-4}$
 - Pion beam with high intensity and rate
 - Excellent particle identification (PID)
 - Timing + position reconstruction
 - Energy deposition
 - Energy resolution for differentiating $\pi \to e$ and $\pi \to \mu \to e$

Experiment method:

•
$$R_{e/\mu} = \frac{N(\pi \to e)}{N(\pi \to \mu \to e)} = \frac{N^{H.E.}(\pi \to e)(1 + C_{tail})}{N(\pi \to \mu \to e)}$$

 $C_{tail} = \frac{N^{L.E.}(\pi \to e)}{N^{H.E.}(\pi \to e)}$

PIONEER Collaboration

https://pioneer.triumf.ca

arXiv:2203.01981

Concept design of PIONEER experiment

- $\pi E5$ beam 300 kHz high intensity pion beam at PSI
- Degraded TARget to slow pions
- Active TARget to stop pions
- Calorimeter to determine positron energy and timing
- Tracker auxiliary part to determine topology of exiting positron track

Illustration of PIONEER

8

ATAR – a (4+1)-D tracking calorimeter

Challenges to ATAR

- Signal-to-background ratio $O(10^{-4})$ require excellent $\pi \rightarrow \mu$ rejection
- Pileup old muons
- Impurity from beam μ/e
- Design must satisfy
 - High granularity for tracking
 - Fast response in timing
 - Good determination of energy deposition inside ATAR

ATAR – a (4+1)-D tracking calorimeter

- Low Gain Avalanche Diode (LGAD)
 - An additional gain layer multiply signals
 - Better timing resolution down to O(10) ps
 - Widely used at particle physics, e.g. HL-LHC, EIC, etc.
- ATAR key specifications
 - 48 layers of 120um-thick LGAD plane
 - 2x2 cm² transverse size for each layer
 - 100 strips for each layer (200 um pitch size)

Substrate is just for handling, can be thinned down after fabrication

Calorimeter

Challenges to CALO

- Bhabha scattering, shower leakage, σ_E and etc. lead to a tail of $\pi \rightarrow e$ under overwhelming $\pi \rightarrow \mu \rightarrow e$
- Pileup muon accidentally produce fake $\pi \rightarrow e$

Calorimeter needs to satisfy

- Reasonable radiation length
- Excellent energy resolution
- Large solid angle coverage
- Precision timing

CALO options: LXe and LYSO crystal

Liquid Xenon (LXe) arxiv:2310.11902

- Excellent homogeneity
- Energy resolution ~1.8% @ 50 MeV

LYSO crystals NIM A 824 (2016) 684, arxiv:2203.06731

- Segmented
- Prototype studies show resolution < 2%

Detector	Density	dE/dx	X_0	R_M	Decay time	λ_{max}
	$ m g/cm^3$	MeV/cm	\mathbf{cm}	\mathbf{cm}	ns	nm
LXe	2.953	3.707	2.872	5.224	3, 27, 45	178
$\mathrm{LSO(Ce)}$	7.40	9.6	1.14	2.07	40	402

Fast trigger and data acquisitions

Several key triggers

- PI an unbiased trigger
- Prompt suppress $\pi \rightarrow \mu$
- CALO suppress $\pi \rightarrow \mu$
- TRACK for redundancy

triggers	prescale	range	rate
		$\mathrm{TR}(\mathrm{ns})$	(kHz)
ΡI	1000	-300,700	0.3
CaloH	1	-300,700	0.1

Summary and outlook

- Unique physics opportunities to study LFUV by measuring pion rare decays
- PIONEER aims at
 - $R_{e/\mu}^{\pi} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))}$ with uncertainty O(0.01%)
 - $R_{\beta\pi} = \frac{\Gamma(\pi^+ \to \pi^0 e^+ v(\gamma))}{\Gamma(total)}$ with uncertainty O(0.05%)
- Active developments of PIONEER design
 - (4+1)-D active silicon targets
 - Calorimeter with excellent timing and energy response
 - Fast trigger and DAQ
 - And more!

Backup

PIONEER Experiment

	202	4	2025		2026	20)27	2028	202	9	2030		2031		2032		
	♦ CD0		♦ CD1		 ◆ CD2, 	PSI Shu	tdown	/ Upgade		•	CD4						
	LXe 1	100 L			Active Tgt	Test				Run-1	Run-2		Run-3		Run-4		
R&I	D		R&D	Large Pr	ototype	Major	constru	ction period	Install			Phy s		Phy s		<mark>Phy</mark> s	;

Funding					
Profile	Operating grants and small sup	plements	Large purchases:		
	Special R&D award for prototy	pes	LXe procurement		~1 \$11
	Project funds		Photosensors and electronics		
Integral of green			Calibration system		
equals Project		ASIC dev	All electronics	LXe and tanks	
Request	R&D: Active Target,	2nd LXe test		Final install eng	g OPERATION SUPPORT OF GROUPS
	LXe Prototype and Electronics	Elect / DAQ			

P5 presentation by D. Hertzog

CKM and LFUV

Redefinition of fermi constant and assume CKM in SM is unitary

$$\frac{1}{\tau_{\mu}} = \frac{(G_{F}^{\mathcal{L}})^{2} m_{\mu}^{5}}{192\pi^{3}} (1 + \Delta q) (1 + \varepsilon_{ee} + \varepsilon_{\mu\mu})^{2} \qquad V_{ud}^{\beta} = V_{ud}^{\mathcal{L}} (1 - \varepsilon_{\mu\mu}) \qquad V_{us}^{K_{\mu3}} = V_{us}^{\mathcal{L}} (1 - \varepsilon_{ee}) \\ V_{us}^{K_{e3}} = V_{us}^{\mathcal{L}} (1 - \varepsilon_{\mu\mu}) \qquad V_{us}^{F} = G_{F}^{\mathcal{L}} (1 + \varepsilon_{ee} + \varepsilon_{\mu\mu}) \qquad V_{us}^{\beta} \equiv \sqrt{1 - (V_{ud}^{\beta})^{2} - |V_{ub}|^{2}} \simeq V_{us}^{\mathcal{L}} \left[1 + \left(\frac{V_{ud}^{\mathcal{L}}}{V_{us}^{\mathcal{L}}}\right)^{2} \varepsilon_{\mu\mu} \right] \qquad R(V_{us}) = \frac{V_{us}^{K_{\mu2}}}{V_{us}^{\beta}}$$

TABLE I. Ratios sensitive to LFUV in the μ -*e* sector, indicating the dependence on the LFU violating parameters ε_{ij} . For $R(V_{us})$ we give the values corresponding to the radiative corrections from Refs. [11,14]. The last column gives the constraints on $(\varepsilon_{\mu\mu} - \varepsilon_{ee}) \times 10^3$ and $\varepsilon_{\mu\mu} \times 10^3$, respectively.

Observable	Measurement	Constraint
$\overline{K \to \pi \mu \bar{\nu} / K \to \pi e \bar{\nu} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}}$	1.0010(25) [77]	1.0(2.5)
$K \to \mu\nu/K \to e\nu \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	0.9978(18) [3,78,79]	-2.2(1.8)
$\pi \to \mu \nu / \pi \to e \nu \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	1.0010(9) [3,80-82]	1.0(9)
$\tau \to \mu \nu \bar{\nu} / \tau \to e \nu \bar{\nu} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	1.0018(14) [3,32]	1.8(1.4)
$W \to \mu \bar{\nu} / W \to e \bar{\nu} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	0.9960(100) [83,84]	-4(10)
$B \to D^{(*)} \mu \nu / B \to D^{(*)} e \nu \simeq 1 + \varepsilon_{\mu \mu} - \varepsilon_{ee}$	0.9890(120) [85]	-11(12)
$R(V_{us}) \simeq 1 - (V_{ud}/V_{us})^2 \varepsilon_{uu}$	0.9891(33) [11]	0.58(17)
	0.9927(39) [14]	0.39(21)

CKM elements

Superallowed beta decay

 $\frac{\Gamma(\pi^+ \to \pi^0 e^+ \nu)}{\Gamma(\text{Total})} = 1.036 \pm 0.004(\text{stat}) \pm 0.004(\text{syst}) \pm 0.003(\pi \to e\nu) \times 10^{-8}$

- PIONEER Phase 2: 3-fold improvement for $R_{\beta\pi}$ and a 0.2% determination for $|V_{us}/V_{ud}|$
- PIONEER Phase 3: 10-fold improvement for $R_{\beta\pi}$ and 0.02% determination for V_{ud} without nuclear structure dependence

* Neutron needs corrections from lifetime and λ

SM and charged scalar

Standard model calculation using ChPT

 $R_{e/\mu}^{(P)} = R_{e/\mu}^{(0),(P)} [1 + \Delta_{e^2 p^2}^{(P)} + \Delta_{e^2 p^4}^{(P)} + \Delta_{e^2 p^6}^{(P)} + \dots]$

$$R_{e/\mu}^{(0),(P)} = rac{m_e^2}{m_\mu^2} \Big(rac{m_P^2 - m_e^2}{m_P^2 - m_\mu^2} \Big)^2.$$

Sensitivity to PeV scale

$$\begin{split} &1-\frac{R_{e/\mu}^{New}}{R_{e/\mu}^{SM}}\sim \mp\frac{\sqrt{2}\pi}{G_{\mu}}\frac{1}{\Lambda_{eP}^2}\frac{m_{\pi}^2}{m_e(m_d+m_u)}\\ & \text{From PiENu proposal} \ \sim(\frac{1TeV}{\Lambda_{eP}})^2\times10^3, \end{split}$$

PRL 99 (2007) 231801

Heavy neutrino, $\pi \rightarrow ev_H$

Heavy neutrino, $\pi \rightarrow ev_H$

Events / 0.25 MeV

PRD 97 (2018) 072012

Error budgets

From PiENu & PEN to PIONEER

$$R_{e/\mu} = \frac{N(\pi \to e)}{N(\pi \to \mu \to e)} = \frac{N^{H.E.}(\pi \to e)(1 + C_{tail})}{N(\pi \to \mu \to e)}$$

- Phase 1: Expected $2x10^8 \pi \rightarrow ev(\gamma)$ for 3 years (5 mon/yr)
- Phase 2: Expected $7 \times 10^5 \pi^+ \rightarrow \pi^0 e \nu(\gamma)$ for 4 years (5 mon/yr)
- Phase 3: Expected $7 \times 10^6 \pi^+ \rightarrow \pi^0 e \nu(\gamma)$

	PIENU 1505.02737	PEN hep-ex/0312017	PIONEER
π^+ stopping rate (Hz)	5×10^4	2×10^4	$3 imes 10^5$
CALO radiation length (X_0)	19	12	25
CALO resolution σ , $\delta E/E$ (%)	0.9	12.8	1.5

Phase	р	$\Delta \mathrm{p}/\mathrm{p}$	ΔZ	$\Delta X \ge \Delta Y$	$\Delta X', \Delta Y'$	R_{π}
	$({\rm MeV/c})$	(%)	(mm)	(mm^2)		$(10^6/\mathrm{s})$
Ι	55 - 70	2	1	10x10	$\pm 10^{\circ}$	0.3
II,III	≈ 85	≤ 5	3	15x15	$\pm 10^{\circ}$	20

Error Source	%	%
Statistics	0.19	0.007
Tail Correction	0.12	$<\!0.01$
t_0 Correction	0.05	< 0.01
Muon DIF	0.05	0.005
Parameter Fitting	0.05	$<\!0.01$
Selection Cuts	0.04	$<\!0.01$
Acceptance Correction	0.03	0.003
Total Uncertainty	0.24	≤ 0.01

PIENU 2015 PIONEER Estimate

PiENu and PiBeta/PEN

PIENU @ TRIUMF

PEN @ PSI

Good geometry but calorimeter depth too small

non uniformity, small solid angle

Brookhaven

National Laboratory

Gallery of ATAR

(a) Standard LGAD
(b) AC-LGAD / TI-LGAD

Fig. 1. Schematic drawings of a standard LGAD (a) and of the proposed trench-isolated LGAD (b).

10.1109/LED.2020.2991351

Figure 1. (a) Sketch of a section of a single-pad standard LGAD; (b) sketch of a section of a segmented AC-LGAD (not to scale).

JINST 14 (2019) P09004

22

Trigger design

← → PCle DAQ

→ Internal data path

