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Neutrinos are massive – so what?

Neutrinos in the Standard Model (SM) are strictly
massless ⇔ neutrino oscillation is BSM physics!

. . . yes, this is not SUSY, large extra dimensions or
anyone’s favorite BSM model, but it IS the only
laboratory-based proof for the incompleteness of the
SM.

Alas, it is indirect evidence: no energy scale, no
symmetry, no new interaction, no new particles are
seen in the laboratory.
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Neutrinos in a nutshell
mν . 0.8 eV, could be Dirac or Majorana

Quarks

|UCKM | =





1 0.2 0.005
0.2 1 0.04
0.005 0.04 1





Neutrinos

|Uν | =





0.8 0.5 0.15
0.4 0.6 0.7
0.4 0.6 0.7





Majorana mass term allows for things like seesaw and
could be simple explanation why mixings so different.
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CP violation
There are only very few parameters in the νSM which
can violate CP

• CKM phase – measured to be γ ≃ 70◦

• θ of the QCD vacuum – measured to be < 10−10

• Dirac phase of neutrino mixing

• Possibly: 2 Majorana phases of neutrinos

At the same time we know that the CKM phase is not
responsible for the Baryon Asymmetry of the
Universe. . .
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Unitarity triangles

We currently have no way to directly measure any of
sides containing ντ .
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What did we learn from that?

Our expectations where to find BSM physics are
driven by models – but we should not confuse the
number of models with the likelihood for discovery.
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• CKM describes all flavor effects

• SM baryogenesis difficult

• New Physics at a TeV unlikely

and a vast number of parameter and model space
excluded.
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Non-standard interactions
NSI are the workhorse for BSM physics in the
neutrino sector. They can be parameterized by terms
like this

LNSI = −2
√
2Gfǫ

fP
αβ (ν̄αγ

ρνβ)(f̄γρPf) ,

Wolfenstein, 1978

NB – difficult to build UV-complete models with
large effects, e.g Farzan, 2015

Systematic matching to SM EFT also possible,
resulting in relationships between the naive ǫ’s.
Falkowski, Gonzaléz-Alonso, Tabrizi, 2019
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Impact on three flavors

PH, D. Vanegas, 2016

Three flavor analysis
are not safe from these
effects!

In this example, CP conserving new physics fakes CP
violation in oscillation!
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NSI 2020

Gehrlein, Denton, Pestes, 2020

2020 NOvA and T2K
data is slight tension

CP violating NSI could
be the explanation.

Every time T2HK & DUNE find different values for
oscillation parameters the same game will be played
and we’ll never know if it’s real or just systematics.
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DUNE & NSI

Kopp for DUNE, 2013

NC NSI modifies matter
effects

Only one NSI parameter
at a time.

This is what a mass hi-
erarchy measurement at
> 5σ really buys you.
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Flavor models
Simplest un-model – anarchy Murayama, Naba, DeGouvea

dU = ds212 dc
4

13 ds
2

23 dδCP dχ1 dχ2

predicts flat distribution in δCP

Simplest model – Tri-bimaximal mixing Harrison,

Perkins, Scott
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obviously corrections are needed – predictivity?
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Sum rules

0 50 100 150

predicted value of ∆CP @éD

Θ12=35°+Θ13cos∆

Θ12=45°+Θ13cos∆

Θ12=32°+Θ13cos∆

Θ23=45°+ 2 Θ13cos∆

Θ23=45°-1� 2 Θ13cos∆

current errors

3% on sin22Θ13

0.7% on sin2
Θ12

1% on sin22Θ23

current best fit values and errors

for Θ12, Θ13 and Θ23 taken from

Fogli et al. 2012

15é

NB – smaller error on θ12 requires dedicated experiment like JUNO

Antusch, King
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How well can we measure δ?

DUNE TDR

This corresponds approximately to phase II.
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The way forward
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Nuclear effects – example

Wide Band, L=1300 km

Perfect Rec., Cal.
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In elastic scattering
a certain number of
neutrons is made

Neutrons will be
largely invisible even
in a liquid argon TPC

⇒ missing energy

In general, neutrino energy reconstruction is a
difficult problem.
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Theory and cross sections

Theory is cheap, but multi-nucleon systems and their
dynamic response are a hard problem and there is not
a huge number of people working on this. . .

LQCD right now starts to be able to derive nucleon (!)
level information.

Without being anchored by
data, any result will be based
on assumptions and uncon-
trolled approximations.

Requires a novel precision, high-luminosity neutrino
source ⇒ nuSTORM & ENUBET
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The big question

Things the Standard Model does NOT explain

• Neutrino mass

• Dark matter

• Baryon asymmetry

• Dark energy

• Gravity

50 years of ideas, most have been retired by flavor
physics and LHC results

Is there anything within our means we can find?

NB: None of the neutrino properties & discoveries
was anticipated by theory.
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Gallium anomaly

Radioactive source experiments

GALLEX GALLEX SAGE SAGE
BEST BEST

(inner) (outer)

0.953± 0.11 0.812± 0.10 0.95± 0.12 0.791± 0.084 0.791± 0.044 0.766± 0.045

Nuclear matrix elements

ground state
follows from beta
decay of 71Ge

excited states?
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Gallium and solar

BCHSZ 2021

Any model for the matrix ele-
ment yields more than 5σ for
the gallium anomaly, even the
ground state contribution by
itself.

BUT, there is a more than 3σ tension with solar data.
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Explanations?
Experimental reasons (all disfavored)

longer 71Ge halflife smaller matrix element, smaller cross section

see also Giunti 2023

new excited state in 71Ga would change the matrix element

larger BR(51Cr → 51V∗) changes relation between decay heat and
source strength

71Ge extraction efficiency some 71Ge does not get extracted

Engineer a MSW resonance

at the 51Cr neutrino energy.

Brdar, Gehrlein, Kopp, 2023
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Non-neutrino BSM

Brdar et al., 2023

Running DUNE w/o a
target to reduce neutrino
background (!)

Relies on the MCND

Also sensitive to scalar
light dark matter
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Outlook
• Neutrino physics has a lot of room for surprises.

• DUNE and T2HK are highly synergistic.

• Having both experiments is a crucial cross check
on cross section systematics.

• It makes sense to push sensitivities even after
DUNE/T2HK with neutrino factories.

• Neutrino factories have strong synergies with
muon collider R&D.

What to do with the gallium results?
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