Status and Prospects of the DUNE Experiment

Wei Shi Stony Brook University for the DUNE Collaboration

> **DPF-PHENO 2024 May 13** Pittsburgh

DUNE Collaboration

DUNE Far Site

SURF in Lead, South Dakota

Cavern excavation completed Feb 1, 2024 - outfitting & receive cryostats 4850 ft underground, 8 soccer fields, 800 ktons of rock Could house up to four 17 kt LAr TPC far detector modules

Flagship Program: long-baseline neutrino oscillation physics

High precision measurements of neutrino mixing in a *single* experiment

- First year data taking: oscillated ν_e approximately sum of T2K & NOvA
- Neutrino mass ordering: unambiguous discovery@66kt-MW-yr (<3yr)
- Observation and measurement of CPV in lepton sector
 - Max CPV: 3σ evidence@100kt-MW-yr (<5yr, Nature kindness)
- Wide-band beam

 - Resolves degeneracies: non-max-CPV, θ_{23} octant (anti-correlation to sin²2 θ_{13}) • Offers 2nd oscillation peak: stronger CPV effect & lower E (separate measurement)
- Indirect and direct tests of the 3- ν paradigm (PMNS unitarity)
 - Direct test precision dominated entirely by ν_{τ} appearance data (possible with reoptimized high E beam)

δ_{CP} resolution

Low Energy Physics

Observatory for astrophysical neutrino sources

- Solar
 - 5 σ sensitivity to Hep flux in Phase I
 - Sensitive to ⁸B flux
- Galactic supernova neutrino burst
 - Unique sensitivity to (thousands of) ν_{e} , complementary to HK, JUNO ($\bar{\nu}_{e}$ IBD)
 - Triggering: > 95% efficiency at 20 kpc
 - Pointing capability: 5-7 degrees at 68% coverage (40kt LAr)
- Diffuse supernova neutrino background (guaranteed signal!)
 - 22 33 MeV window
 - 2.2σ significance after 400kt-yr (assume 8.8% energy resolution)

BSM physics

- Beyond $3-\nu$ paradigm: sterile neutrino mixing
- Baryon number violating processes (400 kt-yr)
 - Unique at DUNE: $p \rightarrow K^+ + \nu$
 - p lifetime > 1.3×10³⁴ yr (90% CL)
 - $n \bar{n}$ oscillation
 - Free n: $> 5.53 \times 10^8$ s (90%CL)

BSM and More

Eur. Phys. J. C 81 (2021) 4, 322

BSM physics

- World leading sensitivity on inelastic boosted dark matter at low mass in early years:
 - Capability to resolve low-energy electron/ proton tracks
- Neutrino trident production (ND)
 - New gauge boson probes gauged $L_{\!\mu}-L_{\!\tau}$

More...

- Atmospheric neutrino oscillation
- Non-standard neutrino interactions
- Non-unitary PMNS
- CPT and Lorentz violation
- Large-extra dimensions
- Heavy neutral leptons
- Neutrino magnetic moment
- Millicharged particles

DUNE Near Detector

ND measurements shall be of sufficient precision to ensure that when extrapolated to predict the FD event spectra, the associated systematic error must not dominate the measurement precision

Day 1:

- ND-LAr: 7x5 array of 1x1x3 m³ LArTPCs
 - Active LAr 130t, expect ~50 ν events/10 μ s beam spill
- **TMS**: magnetized steel range stack to measure muons
- **SAND:** multi-purpose on-axis magnetized detector primarily for beam monitor
- Preliminary Design Review: late 2024 early 2025

A special physics program: DUNE-PRISM

- Precision Reaction-Independent Spectrum Measurement
- NDLAr + TMS can move up to 28.5m off axis
- Measure a variety of neutrino energy spectra
 - Constrain standard oscillation analysis systematics
 - Linearly combine DUNE-PRISM data to predict the FD oscillated data allows any unknown or poorly modeled cross-section effects to be naturally included in the prediction

ND prototypes

NDLAr 2x2 demonstrator at NuMI neutrino beam

- Four TPC modules installed in former location of MINOS-ND
- Includes upstream/downstream trackers, repurposed from **MINERvA**
- Goals:
 - Demonstration of performance in a GeV neutrino beam
 - Develop neutrino signal analysis and reconstruction techniques
 - 3D signals, charge-light correlation, pileup, track matching
- Expect to run in FY2024

A Full Scale Demonstrator (1x1x3 m³) at Bern

• 410k pixels, 3.7mm pitch, 30% optical coverage

• Goals:

- Validate full-scale TPC assembly and integration
- Exercise ND-LAr component production and testing program
- Demonstrate design meets ND-LAr system-level requirements
- Inform ND-LAr Final Design Review
- Expect to run in August 2024

DUNE Far Detector 2

FD2 features

- First FD to be installed: cryostat install Q3 2024!
- The state-of-the-art: draws from the strengths of many liquid argon prototypes and experiments
- 6.5 m vertical drift distance, maximized active volume 14,190 ton
- Simplified charge readout plane (CRP) perforated PCB, reducing overall costs to FD1
- **Power-over-Fiber (PoF)** technology enables **photodetectors**

FD1 features

- **3.5 m** horizontal drift distance (180 kV cathode), 4 drift volumes
- Active volume 13,661 ton
- Charge readout: wire planes (3 layers)
- Photodetectors (X-Arapuca) behind anode

Efficiency [%]

- PDE 2-3%
- Mean light yield ~30PE/MeV

FD Prototypes

ProtoDUNE-HD (FD1)

- Beam run 2024 July-August 8 weeks
- Topics: (More in Matthew's talk next)
 - Focus on negative polarity and lower energy beam (complement 2018 PD-SP program)
 - Precise measurement of hadron-argon cross sections
 - Dual calorimetry for PID and event reconstruction

ColdBox (VD)

• Many prototypes before final design, fast turnaround (1 month)

ProtoDUNE-VD (770t LAr)

- Cosmic run in Oct following LAr transfer from ProtoDUNE-HD
- Beam run expected early 2025
- Topics:
 - Neutron tagging (capture)
 - Xe-doping program
 - Light propagation

DUNE Phase II Scope

Phase I (day 1)

- FD (approved): two 17 kt (total) LAr TPCs one Horizontal Drift, one Vertical Drift.
- ND (baseline TBC and approve by 2025): NDLAr with TMS; DUNE-PRISM; SAND on-axis.

Phase II - open to new (non-DUNE) collaborators!

- Two additional 17 kt FD modules
- More Capable Near Detector (MCND) including ND-GAr
- > 2MW beam (not covered in this talk)

Phase-II is not optional - All necessary to complete the core CPV program of DUNE and more

DUNE Phase II FD

FD3 vision

- Similar in concept to FD2 optimized VD
- Proposed upgrades:
 - Major upgrade: light detection system APEX
 - Xe-doping
 - Modest optimization on charge readout
- Incremental background control
- Construction fully endorsed by the 2023 P5

FD technically limited schedule

Earliest installation:

FD3: 2029 FD4: 2030

Earliest completion:

FD3: 2034 FD4: 2036

FD4 vision

- Goal: push E threshold to MeV or lower
- **Baseline** concept: similar to FD2
 - Several options being explored: upgrade to pixelbased 3D charge readout or optical-based charge readout
 - Dedicated compact background shield design
- Alternative concept: water-based liquid scintillator
- Endorsed by P5 as a "Module of Opportunity" and recommended an accelerated/expanded R&D program in the next decade if budget scenarios are favorable

FY36			
Q1	Q2	Q3	Q4
		North Courses	

DUNE FD3 APEX (Aluminum Profiles with Embedded X-Arapucas): A fully integrated LArTPC field cage + photodetector system

Features

- ~60% optical coverage of LAr (active) volume (**2000** m^2 scaled-up surface PDS): 10 times of FD2 (cathode & behind FC)
- Min (avg.) light yield x6 (x4) times higher wrt FD2, higher uniformity
- Lower detection thresholds, better timing and energy resolution extend frontiers of neutrino oscillation and low energy astroparticle physics from GeV to MeV
 - Diffused supernova neutrino background
 - CPV in neutrino 2nd oscillation peak
 - Background tagging (e.g. neutron capture) and rejection
 - Enhance supernova & solar neutrinos sensitivity
 - BSM/dark matter

DUNE Phase II ND

Major upgrade: a gaseous argon detector (ND-GAr) will replace the Phase I muon tracker TMS • A high pressure (10 bar) gaseous TPC: Ar-based gas mixture

- **Dual readout**: charge (multiwire/GEMs/MicroMegas) + light (commercial Timepix3 cameras)
- ECAL (scintillator + lead sandwich): E&M (5% Eres @1GeV), neutron ToF (50% purity, 20-40% efficiency), μ/π PID (hadronic interaction of pion in ECAL helps PID)
- Superconducting magnet **0.5T**: partial return yoke facing ND-LAr to reduce dead region
- Lower energy and tracking threshold + sub-mm spatial resolution + better PID and momentum resolution
- Address systematic challenges in oscillation physics by providing precise measurements
- **P5 endorsed construction** in baseline and favorable budget scenarios: construction timeline similar to FD3

DUNE is a world-class neutrino experiment

- High precision measurements of neutrino mixing in a *single* experiment
- Observatory for astrophysical neutrino sources
- Offers many BSM physics topics

Phase I - Day 1 FD: FD2 (2029) + FD1 (2030)

• FD prototypes: ProtoDUNE-HD (FD1), ProtoDUNE-VD (FD2) - both will run at CERN NP in 2024!!!

Phase I - Day 1 ND: ND-LAr + TMS + PRISM + SAND (2031)

• ND prototypes: 2x2 demonstrator (FNAL), full scale demonstrator (Bern) - both expected to run 2024!!!

DUNE Phase II is essential to DUNE core physics and received strong endorsement from P5

- Two additional 17 kt FD modules
- More Capable Near Detector (MCND) including ND-GAr
- > 2MW beam
- Open to new (non-DUNE) collaborators!

Summary