Neural Network Based Fast Optical Simulation Method in ProtoDUNE-VD

Minisymposium: Neutrino Science with the DUNE Experiment

Shuaixiang (Shu) Zhang for the DUNE Collaboration

DPF-PHENO 2024, Pittsburgh

May 13, 2024 (Monday)

- Introduction to DUNE & ProtoDUNEs
- Neural Network Based Module for ProtoDUNE-VD PDS
 - Photon Detection System (PDS) in ProtoDUNE-VD
 - ♦ Training Samples & Network
 - Evaluation & Performance
- Summary

Sketch of DUNE

- DUNE: Deep Underground Neutrino Experiment
- Components: Beam (1.2MW, → 2.4MW); Near detectors (SAND, ND-LAr + TMS (PRISM)); Far detectors (FD1 & FD2: LArTPC, FD3 & FD4: Opportunities)
- Timetable: ~2029 start of science
- Collaborations: > 35 countries, > 200 institutions, > 1,400 collaborators

DUNE Far Detectors & New ProtoDUNEs

- FD1 & FD2: Cavern finished @ Feb 1, 2024! Construction underway
- FD1 / FD2 protoDUNE- HD / VD: horizontal / vertical -drift LArTPC
- ProtoDUNE-HD: running NOW; ProtoDUNE-VD: run @ spring 2025

LArTPC & Scintillation Light

- LArTPC: Liquid Argon Time Projection Chamber
- Scintillation light yield: ~24,000 γ /MeV @500V/cm, peaked at 9.7eV
- Light components: fast component (7ns), slow component (1,600ns)

PDS of ProtoDUNE-VD

Optical channels: 40

(16 X-Arapucas + 18 PEN PMTs + 6 TPB PMTs)

Photon detection efficiency:

X-Arapuca: $\sim 3\%$,

PMT (PEN, TPB): ~20%

Why Neural Network Method

Traditional full light simulation (GEANT4): track every photon; Challenge for kT-scale LAr detector

& GeV-scale energy deposition; Giant computational cost, very slow

Network Based method (comp graph module): Given photon emission vertex, output visibilities of

https://iopscience.iop.org/article/10.1088/2632-2153/ac58e2

Training Sample Generation

Based on LArSoft (GEANT4): track every photon, record photon

emission vertex & responses of all 40 optical channels

Space distribution of events	Uniform	
Boundaries	$x \in [-375, 415]cm, y \in [-427.4, 427.4]cm, z \in [-277.75, 577.05]cm$	
Events # (training set, validation set, test set)	1,700,000; 10,000; 10,000	
Events average Interval (training set)	$\sim \frac{800 cm}{\sqrt[3]{1700000}} = 6.7 cm$	
γ emission vertex / event	$\# = 10^6$, isotropic	
Energy distribution of γ	Gaussian with $(\mu, \sigma) = (9.69, 0.25)eV$	
Rayleigh scattering length (RSL)	99.9cm @ 9.69eV	
Absorption length (Abs)	20m @ 9.69eV	
Reflectivity considered	["STEEL_STAINLESS_Fe7Cr2Ni", "Copper_Beryllium_alloy25", "G10", "vm2000", "ALUMINUM_Al"]	

Network & Training Details

Optical Channels are divided into different groups based

on their geometrical layout:

0 ~ 3	4~ 11	12 ~ 15	16 ~ 17	18 ~ 21
22~23	24~ 29	30 ~ 33	34 ~ 39	

Training parameters of network:

Total params: 162,922 Trainable params: 156,348 Non-trainable params: 6,574

Training command & hyper-parameters:

(tf_env) initial_train_3 ➤ python3 gnn_Muve/gnn.py -i ./dataSet/ train_18149Files -o output_2048b_10000e -t 0 -b 2048 -e 10000 -n 18149 -d 40 --train > train_2048b_10000e.log

```
def model_protodunevd_v4(dim_pdr):#dim_pdr: num of opchannels
    pos_x = Input(shape=(1,), name='pos_x')
    pos_y = Input(shape=(1,), name='pos_y')
    pos_z = Input(shape=(1,), name='pos_z')
    input_layer = [pos_x, pos_y, pos_z]
```

#combine the nine blocks--feat_con = concatenate([feat_cov_1, feat_cov_2, feat_cov_3, feat_cov_4, feat_cov_5, feat_cov_6, feat_cov_7, feat_cov_8, feat_cov_9]) feat_con = Dense(dim_pdr)(feat_con) feat_con = BatchNormalization(momentum=0.9)(feat_con) feat_con = ReLU()(feat_con)

INDIANA UNIVERSITY

Network snippets

pdr = Dense(dim_pdr, activation='sigmoid', name='vis_full')(feat_con) model = Model(inputs=input_layer, outputs=pdr, name='protodunevd_v4_model')

```
model.summary()
return model
```

. . .

. . .

Results & Evaluation (I)

- Events from validation set (#events = 93,190)
- For every event, photon numbers received by all optical channels are summed
- Results from Neural Network Module (comp graph module)

Results & Evaluation (II)

- Collective performance of all optical channels
- Emul: comp graph module; Simu: GEANT4
- Data point: sum up photon counts received by all opChs, then evaluate their difference

Events distribution:

	Whole	Active	Inactive
	Space	Volume	Volume
Total events num	93,190	26,230	66,960
Events with $ Bias \leq 1$	93,045	26,210	66,835
	(99.8%)	(99.9%)	(99.8%)
Events with $ Bias \le 0.1$	87,225	25,474	61,751
	(93.6%)	(97.1%)	(92.2%)

Results & Evaluation (III)

- Optical channels need NOT to be sensitive to every point (vertex) in space *
- "Track-like" evaluation: along certain axis (x, y, z), $\sigma = 20cm \times 20cm$, going trough whole cryostat *
- Vertex num per event (cell): 305 *

Results & Evaluation (IV)

- Performances of most optical channels better than statistical fluctuation (expect: 15%)
- Poor performances of opch30, 31, 32 & 33: Bad layout, higher stat fluctuation expected

INDIANA UNIVERSITY

12 May 13, 2024

Performance of Comp Graph Module

- ♦ 7GeV, μ^{-} , # = 100; starting at (300, 0, 150)*cm*, downward
- ✤ Simulation time: ~1h

Summaries

- Proper structure of neural network developed
- Collective performance of optical channels excellent @ point & track-like evaluation
- Most single optical channels perform well, uncertainty lower than statistical fluctuation
- Quick and reasonable optical simulation based on comp graph module observed
- Merged into DUNE LArSoft; now collaboration-wide available
- Further Steps:
 - 1. Develop Xe light fast optical simulation module based on this LAr light experience
 - 2. Make similar module for protoDUNE-HD
 - 3. Work on specific topic (ex: Rayleigh scattering length)

Backups

OpCh Labels in v4 Geometry

Optical Channels positions: 302.18 417.61 149.65 302.18 -417.61 149.65 1 226.38 417.61 149.65 226.38 -417.61 149.65 3 205.65 258.525 -131.35 258.525 0 39.15 187.275 6 -297.85 187.275 0 205.65 112.025 0 -39.15 112.025 9 131.35 40.775 10 0 -205.65 40.775 0 11 -205.9 221 380.988 12 -221 380,988 -205.9 13 -205.9221 -68.1242 14 15 -205.9 -221 -81.6884 -207.23 417.61 149.65 16 -207.23-417.61 149.65 17 -281.7 221 380.988 18 -281.7 -221 380.988 19 -281.7 221 -68.1242 20

40

RSL, Abs & Reflectivity

Rayleigh scattering length:

118	services.LArPropertiesService.RayleighEnergies: [1.18626, 1.68626, 2.18626, 2.68626, 3.18626, 3.
	68626, 4.18626, 4.68626, 5.18626, 5.68626, 6.18626, 6.68626, 7.18626, 7.68626, 8.18626, 8.68626,
	9.18626, 9.68626, 10.1863, 10.6863, 11.1863
119	services.LArPropertiesService.RayleighSpectrum: [1200800, 390747, 128633, 54969.1, 27191.8,
	14853.7, 8716.9, 5397.42, 3481.37, 2316.51, 1577.63, 1092.02, 763.045, 534.232, 371.335, 252.
	942, 165.38, 99.9003, 51.2653, 17.495, 0.964341

Absorption length:

For more details, refer to photonFull_module0_sim.fcl @ <u>https://drive.google.com/drive/u/1/folders/1x9Ux9kvIIA5VsE8mRrrKuzye1teI5owl</u>

Photon Spectrum of LAr

- Black: LAr, Red: GAr
- LAr: Peak @ 126.8nm, FWHM: 7.8nm [122.9, 130.7]nm Energy: Peak @ 9.78eV, FWHM: 0.602eV
- Assuming Gaussian distribution (Not true...): (μ, σ) = (9.78, 0.256)eV

Normal distribution [edit]

See also: Gaussian beam § Beam waist

If the considered function is the density of a normal distribution of the form

$$f(x) = rac{1}{\sigma\sqrt{2\pi}} \exp iggl[-rac{(x-x_0)^2}{2\sigma^2} iggr]$$

where σ is the standard deviation and x_0 is the expected value, then the relationship between FWHM and the standard deviation is^[1]

 $\mathrm{FWHM} = 2\sqrt{2\ln 2} \ \sigma \approx 2.355 \ \sigma.$

https://arxiv.org/ftp/arxiv/papers/1511/1511.07718.pdf https://iopscience.iop.org/article/10.1088/1748-0221/15/09/P09009/pdf

Statistical Fluctuation Estimation (I)

- Simulation details: μ^{-} ; 500 nums; [6, 7] GeV uniformly distributed; detection efficiency: 3% *
- Track: Starting point: (x, y, z) = (50, 350, 187); toward *y* direction; $\delta x \times \delta z = 1 cm \times 1 cm$ *
- Computational graph module applied; Rayleigh scattering length: 99.9cm; Absorption length: 20m *
- Fluctuation: higher than Poisson distribution, due to complicated processes (i.e. reflectivity, δ electron) *

Statistical Fluctuation Estimation (II)

Performance of OpCh09: X-Arapuca on the cathode

$$\sigma_{total} \sim \frac{Std}{Mean} \sim \frac{4126}{21670} \sim 19\%$$

★ Due to received photon numbers, and module fluctuation $\sigma_{mod}(C XA) < \sigma_{mod}(M XA) < \sigma_{mod}(PMT)$:

 $\sigma_{total}(PMT) > \sigma_{total}(Membrane XA) > \sigma_{total}(Cathode XA)$

• Underestimation of Membrane X-Arapuca $\sigma_{stat}(M XA)$:

$$\sigma_{stat}(M XA) \sim \sqrt{\sigma_{total}^2(C XA) - \sigma_{module}^2(M XA)} \sim 15\%$$

↔ We can conclude $\sigma_{mod}(M XA) < \sigma_{stat}(M XA)$

LAr Scintillation Light Mechanism

Photon Coverage of Single OpCh

- 10^6 photons emitted per event / point.
- ✤ Response of optical channel 9, the X-Arapuca located at cathode

Other Fast Optical Simulation Methods

- Photon library: <u>https://wiki.dunescience.org/wiki/Fast_light_simulation_options</u>
- Semi-analytical method: https://epic.epi.org/articles/epic/abs/2021/04/10052_2021_Article_9119/10052_200044Article_9119/10052_200044Article_9119/10052_20044Article_9119/10052_20044Article_9119/10052_20044Article_910044Article_9119/10052_20044Article_9119/1
- GPU-based Opticks: <u>https://indico.cern.ch/event/942142/contributions/4016049/attachments/2102768/3535523/Opticksnew3.pdf</u>

GPU Resident Photons

Opticks

Seeded on GPU

associate photons -> *gensteps* (via seed buffer)

Generated on GPU, using genstep param:

- number of photons to generate
- start/end position of step

Propagated on GPU

INDIANA UNIVERSITY

Only photons hitting PMTs copied to CPU

Thrust: high level C++ access to CUDA

- Code at the speed of light
- https://developer.nvidia.com/Thrust

