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Muon Collider

2

 Muon collider is capable of awesome physics
 Excellent discovery reach
 Precision measurement

 Need to ensure that the beam has the highest luminosity possible
 High quality beam while retaining the high current
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Muon Collider Facility
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 MW-class proton driver → high proton flux
 Fermilab proton facility may be compatible

 Target & solenoid capture → large acceptance for pions
 Muon cooling → laser-like muon beam
 Rapid acceleration & tight focusing at the interaction point
 Luminosity is key to muon collider design

p
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Proton driver
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 MW-class proton driver → high 
proton flux
 Fermilab proton facility can be 

compatible
 Low number of bunches

 But each bunch ultra intense
 Fermilab ideal

 Short bunches
 Maximise instantaneous intensity
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MuC Target

 Protons on target → pions → muons
 Graphite target takes proton beam to produce pions
 Heavily shielded, very high field solenoid captures π+ and π -
 Taking best bits of LBNF/μ2e target concepts

 Investigating force-flow cooled High Temperature Superconductor 
 Operation at 20 K → more efficient cryo plant
 Smaller footprint and stored energy than LTS

 Also strong synergy with
 Fusion
 UHF Magnets for science



  

Capturing the Beam
 Even with a strong magnet, capturing the pions is hard

 Large spread in angles
 Large spread in momenta
 → Large emittance

 Emittance is a conserved quantity
 Size of the beam in position-momentum phase space
 No amount of focusing can reduce it

 Liouville’s theorem

 What can we do?
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1809 - 1882
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Example – short proton bunch

 Energy spread from pion production is irreducible
 Time spread follows from the proton bunch length
 Short proton bunch → short pion bunch → short muon bunch
 We can go one step better - cooling



  

Absorber

 Beam loses energy in absorbing material
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more straight

 Multiple Coulomb scattering from nucleus ruins the effect
 Mitigate with tight focussing
 Mitigate with low-Z materials
 Equilibrium emittance where MCS completely cancels the cooling

 Reduce transverse emittance in this way

Ionisation Cooling

MUONSRF



  

 Initial beam is narrow with some momentum spread
 Low transverse emittance and high longitudinal emittance

 Beam follows curved trajectory in dipole
 Higher momentum particles have higher radius trajectory
 Beam leaves dipole wider with energy-position correlation

 Beam goes through wedge shaped absorber
 Beam leaves wider without energy-position correlation
 High transverse emittance and low longitudinal emittance

Emittance exchange

Dipole
Wedge 
shaped 
absorber



  

Rectilinear Cooling

 6D Cooling
 Combined function dipole-solenoid magnets
 Compact lattice – RF integrated into magnet cryostat
 Lithium Hydride or lH2 absorbers
 Careful field shaping to control position of stop-bands

Beam



  11

Final cooling

 Challenge is to get very tight focussing
 Go to very high fields (~30 - 40 T) and lower momenta

 Causes longitudinal emittance growth
 Chromatic aberrations introduce challenges

 Elaborate phase rotation required to keep energy spread small
 Move to low RF frequency to manage time spread
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Muon Cooling

4D Final 
cooling

Rectilinear
cooling
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Muon Accelerator R&D

 MERIT
 Demonstrated principles of muon accelerator 

proton targetry/pion production
 EMMA

 Demonstrated fast acceleration in FFAGs
 MUCOOL

 Cavity R&D for ionisation cooling
 Demonstrated operation of cavities at high 

voltage in magnetic field
 Breakdown suppression using high pressure gas
 Careful RF coupler design and cleaning in vacuum

 MICE
 Ionisation cooling demonstration
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Experimental set up

Measure muon 
position and 
momentum 
downstream

Measure muon 
position and 
momentum
upstream

Cool the muon 
beam using 
LiH, LH

2
, or 

polyethylene 
wedge 

absorbers

Beam 
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Emittance reduction

 When absorber installed:
 Cooling above equilibrium emittance
 Heating below equilibrium emittance

 When no absorber installed
 Optical heating
 Clear heating from Al window

https://arxiv.org/abs/2310.05669 accepted by Nature Physics

https://arxiv.org/abs/2310.05669
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Cooling Demonstrator

 Build on MICE
 Longitudinal and transverse cooling
 Re-acceleration
 Chaining together multiple cells
 Routine operation



  

Muon cooling – R&D Programme
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Technology applications

 High field solenoids have many important application
 Developing collaboration with fusion experts
 MRI magnets

 Muon beam techniques have application in many other fields
 Muon spin resonance (muSR)
 Muon tomography

 Delivery of such a muon beam is a unique achievement
 Harnessing an entirely “new” form of matter
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Final Word

 The muon collider
 Far higher energy than e+e- colliders
 Far smaller footprint than equivalent proton colliders

 Many technical challenges
 All are manageable with current or near-to-current technologies
 Must demonstrate practical solutions

 Muon collider has potential to advance particle physics by many 
decades
 We must now deliver it



  

Further Information
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Comparison with MICE

MICE Demonstrator
Cooling type 4D cooling 6D cooling
Absorber # Single absorber Many absorbers
Cooling cell Cooling cell section Many cooling cells
Acceleration No reacceleration Reacceleration
Beam Single particle Bunched beam
Instrumentation HEP-style Multiparticle-style
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Longitudinal emittance

 Need also to reduce the longitudinal emittance
 Final focus “telescope” responds differently to different momentum particles

 Just like chromatic effects in an optical lens
 Beam size gets smeared if the bunch is long

 Mitigations exist
 But fundamentally, we want to have a low longitudinal emittance

 Beam size in time-energy space

μ+μ-

Region of overlap
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