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Overview
• We’ve created and captured muons, reduced their emittance 

without losing too many of them. Now we need to:
• Get them to a collision energy of ≈5 TeV
• Collider them in a ring, maximizing luminosity of the beam we have

• Outline
• Acceleration to high energy in pulsed synchrotrons
• Alternative: fixed field alternating gradient accelerators
• The collider ring
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Ring Size
• 50 TeV protons require a ring 10 times larger than 5 TeV muons: 

right? Well, sort of.
• This is pretty much true for the collider ring. So a 10 TeV center of 

mass collider ring fits comfortably on the Fermilab site; an 
equivalent proton collider would not.

• Acceleration is more complicated: muons decay
• Protons: can take hours to ramp superconducting magnets if you want
• Muons: you’re in a hurry. You have a few ms. You cannot ramp (traditional) 

superconducting magnets in this time. But you could ramp iron-dominated 
magnets. But they won’t get you fields above about 2 T.
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Pulsed Synchrotrons
• Pulsed magnets need to be iron-dominated to change fields on a 

ms time scale
• Iron dipoles will be limited to a bend field of 1.75 T

• 2.0 T if you use Fe-Co, but cobalt might be a radiation problem
• With only iron dipoles, could only accelerate to 1.3 TeV on the 

Fermilab site
• Not even accounting for quadrupoles, RF, etc.

• Need to get a higher average bend field
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Hybrid Dipoles
• Need a higher average bend field with changing magnetic field
• Mix constant field superconducting magnets with iron magnets that 

bend backward at low energy and forward at high energy
• More SC magnet: higher energy; more iron magnet: more range
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Dipole Field and Circumference
• What is the circumference from dipoles only?
• Circumference

𝐿𝐿𝐶𝐶 + 𝐿𝐿𝑊𝑊 =
𝜋𝜋
𝑞𝑞
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𝐵𝐵𝑊𝑊

−
𝑝𝑝−
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+
𝑝𝑝+
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• Even for infinitely high superconducting fields, there’s a minimum 
circumference for a given energy range: e.g., 2.5–5 TeV, 15 km

• That circumference depends on the pulsed magnet field
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Dipole Field and Circumference
• Another point of view: average dipole field at high energy:

2𝐵𝐵𝐶𝐶𝐵𝐵𝑊𝑊
𝐵𝐵𝐶𝐶 + 𝐵𝐵𝑊𝑊 − 𝐵𝐵𝐶𝐶 − 𝐵𝐵𝑊𝑊 𝑝𝑝−/𝑝𝑝+

• With 𝑝𝑝− = 𝑝𝑝+, 𝐵𝐵𝐶𝐶 as you would expect
• With 𝑝𝑝− = 0, get 2𝐵𝐵𝐶𝐶𝐵𝐵𝑊𝑊/(𝐵𝐵𝐶𝐶 + 𝐵𝐵𝑊𝑊) (e.g., 𝐵𝐵𝑊𝑊 = 1.75 T, 𝐵𝐵𝐶𝐶 = 14 T, get 

3.11 T)
• With 𝑝𝑝− = 𝑝𝑝+/2, number would be 5.1 T

• A tradeoff between energy range and average bend field
• As energy range increase, fraction of warm dipole increases
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Other Components Reducing 
Bend
• Energy reach is reduced by areas that have zero or reduced 

bending
•  Quadrupoles that focus the beam

• Using only warm dipoles, ≈20% of circumference in reaching 5 TeV
• Make hybrid superconducting and pulsed like dipoles; now ≈6%

• Straights for RF cavities
• More straights, higher average gradient, fewer decays, but less energy 

reach
• Dispersion suppression (2 cells on each side of straight), half bend
• Sextupoles for chromaticity correction
• Space between components
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RF Straights
• Need several RF straights (IMCC studies estimated 32)

• Synchronization between energy and dipole field
• Synchrotron tune is around 1; RF kick-drift pair must be below 0.16, 

preferably lower
• Each RF straight needs dispersion suppression, reducing average 

bend field

9



Pulsed Magnet Studies
• Iron response

• No good data on iron response at high ramp rates and approaching 
saturation

• Losses are important, but should also understand response
• Measure material response to single pulse for various ramp rates and 

maximum fields
• Build a small prototype, measure voltage/current/field with a range of drive 

pulse amplitudes and ramp rates
• Is FeCo usable for the magnet pole? Higher field, better energy 

reach. Needs radiation simulations
• Power supplies for production systems
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IMCC and Other Studies
• Lattice design and parametric optimization, both for green-field 

designs and Fermilab siting
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IMCC and Other Studies
• Lattice design and parametric optimization, both for green-field 

designs and Fermilab siting
• Longitudinal dynamics, including nonlinear magnet field ramp and 

impact of number of RF stations
• Collective effects, need for chromaticity correction
• Power supplies for pulsed magnets
• Pulsed magnet design
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Acceleration at Fermilab
• On-site circumference limited to 16.5 km
• Latest numbers: extraction at 5 TeV 

requires 4.1 TeV injection
• Have a lower energy accelerator in 

the same tunnel, will have a larger 
energy range

• May need to back off 10 TeV CoM 
a bit if limited to Fermilab site
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What is an FFA
• Fixed Field Alternating gradient accelerator
• Large energy range (e.g., factor of 2) in a single beamline
• Magnet fields do not vary with time
• Each energy follows a different orbit
• Alternating gradient focusing in compact cells for small orbit 

excursion
• Motivation for muon acceleration:

superconducting-only solution that
will scale with magnet technology;
overcome the limited field in iron

13



FFA: Field and Energy Range
• Assume maximum energy of 5 TeV
• Magnet field depends on minimum 

energy
• Plot shows field at coil, at 1.5 times 

beam radius, and field at beam
• Factor of 2 energy gain possible, but 

high fields
• Limitations similar to pulsed synchrotron

• Minimum energy 3.1–3.6 GeV for 5 TeV max for 
12.5 T max

• Factor of 2, maximum energy 3.5–4.4 TeV for 12.5 T max
• Remarkably similar to pulsed synchrotron numbers
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FFA: Injection/Extraction
• For 0.2 T kickers, about 3 straights for extraction
• Challenge is extraction septum. Ideas to manage:

• Generate angle and position at septum
• Pipe penetrating into aperture
• Special magnets with larger apertures (higher fields!)
• Longer straights (larger fields); maybe taper straight length
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Muon Collider Luminosity
• Luminosity for a muon collider

𝐿𝐿 =
𝑁𝑁02𝑓𝑓𝑓𝑓

4𝜋𝜋𝛽𝛽∗𝜖𝜖⟂𝑛𝑛

𝑐𝑐2𝜏𝜏𝜇𝜇𝐵𝐵
4𝜋𝜋 𝑚𝑚𝜇𝜇𝑐𝑐2/𝑒𝑒

• Inversely proportional to transverse emittance
• Second factor: effective number of turns, proportional to average 

bend field (about 150 times the field in T)
• 𝛽𝛽∗ should be larger than the bunch length

• Bunch length times fractional energy spread is longitudinal emittance
• Reducing 𝛽𝛽∗ reduces energy acceptance
• Longitudinal emittance impacts luminosity
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Muon Collider Luminosity
• Luminosity for a muon collider

𝐿𝐿 =
𝑁𝑁02𝑓𝑓𝛾𝛾2𝜎𝜎𝜃𝜃2

4𝜋𝜋𝜖𝜖⟂𝑛𝑛2
𝑐𝑐2𝜏𝜏𝜇𝜇𝐵𝐵

4𝜋𝜋 𝑚𝑚𝜇𝜇𝑐𝑐2/𝑒𝑒
• 𝜖𝜖⟂/𝛽𝛽∗ is the square of the RMS angular divergence
• 𝜎𝜎𝜃𝜃2 is roughly proportional to 𝐵𝐵𝑄𝑄𝑟𝑟𝑄𝑄/𝛾𝛾

• Want high IR quadrupole pole tip field 𝐵𝐵𝑄𝑄
• Large IR quadrupole radius, but that means lower 𝐵𝐵𝑄𝑄

• Luminosity depends strongly on fields in collider magnets, both arc 
dipoles and IR quarupoles
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Neutrino Radiation
• Neutrinos from muon decays shower in matter where they exit 

surface, leading to small but relevant does to stationary observer
• Increases rapidly with energy: 𝐸𝐸𝜇𝜇3 to 𝐸𝐸𝜇𝜇4

• Ways to manage
• Collider ring deep underground
• Insure there are dipole fields everywhere
• Vary beam trajectory with time, using fields or moving beamline
• Large beam divergence
• Choose or control problematic beam exit locations
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Current IMCC Studies
• Work on 10 TeV collider lattice design

• Including dipoles to reduce BIB
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Current IMCC Studies
• Work on 10 TeV collider lattice design

• Including dipoles to reduce BIB
• Studies of collective effects in the ring
• Mapping lattice functions to 

neutrino radiation dose
• Tools to incorporate geography,

topography, underground 
composition in siting and 
radiation does calculations
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R&D Topics for Collider Ring
• Collider lattice design. In addition to the usual:

• Neutrino radiation mitigation plan (partially site specific)
• Injection (need a straight!). Do we need to dump?
• Determine if RF needed (would also need a straight)
• Interaction with magnet design
• Shielding requirements

• Magnet design
• Determine what is feasible
• Many magnets to design, each a major effort

• Interactions with detector: beam induced background, etc.
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Summary
• We can accelerate muons rapidly to high energies with hybrid 

pulsed synchrotrons
• But we may be limited in energy reach if confined to the Fermilab site
• FFAs provide an alternative that scale well with superconducting magnet 

fields, but need to find an injection/extraction solution
• Good progress is being made on collider ring designs

• Magnet fields have a direct impact on luminosity
• Need a site-specific plan for addressing neutrino radiation

• Much work is still needed before we can build a muon collider. 
Plenty of areas where people can contribute.
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