MUON COLLIDERS: THE PATH TO 10 TEV

DETECTOR AND MACHINE-DETECTOR INTERFACE CHALLENGES

TOVA HOLMES, U. OF TENNESSEE 15 MAY 2024 DPF-PHENO 2024

The driving detector challenge at a muon collider

backgrounds from the decays of beam muons (BIB)

Larry Lee, Charles Bell

The driving detector challenge at a muon collider

how big is this problem?

Larry Lee, Charles Bell

muons have a lifetime of 2.2 µs (but time dilation can help)

$\tau'_{\mu} = 21 \text{ ms} \times \left(\frac{E}{1 \text{ TeV}}\right)$

muons have a lifetime of 2.2 µs (but time dilation can help)

what fraction decay within 20m of an interaction point per pass?

$\tau'_{\mu} = 21 \text{ ms} \times \left(\frac{E}{1 \text{ TeV}}\right)$

 $f \approx 6.4 \times 10^{-6} \times \left(\frac{1 \text{ TeV}}{E}\right)$

muons have a lifetime of 2.2 µs (but time dilation can help)

what fraction decay within 20m of an interaction point per pass?

how much energy do those decay products have?

$\tau'_{\mu} = 21 \text{ ms} \times \left(\frac{E}{1 \text{ TeV}}\right)$

 $f \approx 6.4 \times 10^{-6} \times \left(\frac{1 \text{ TeV}}{E}\right)$

 $E_{\text{decay}} = 13 \text{ EeV} \times \left(\frac{n_{\mu}/\text{bunch}}{2 \times 10^{12}}\right)$

muons have a lifetime of 2.2 µs (but time dilation can help)

what fraction decay within 20m of an interaction point per pass?

how much energy do those decay products have?

$$\tau'_{\mu} = 21 \text{ ms} \times \left(\frac{E}{1 \text{ TeV}}\right)$$

$$f \approx 6.4 \times 10^{-6} \times \left(\frac{1 \text{ TeV}}{E}\right)$$

 $E_{\rm decay} = 13 \,\,{\rm EeV} \times \left(\frac{n_{\mu}/{\rm bunch}}{2 \times 10^{12}}\right)$

huge backgrounds, huge radiation, huge mess

How can we deal with this?

need to block BIB from reaching the detector without interfering with signal

> introduce tungsten nozzles around the beam pipe

How can we deal with this?

need to block BIB from reaching the detector without interfering with signal

incoming particles shower in the nozzle; most energy contained

How can we deal with this?

need to block BIB from reaching the detector without interfering with signal

incoming particles shower in the nozzle; most energy contained

what's left over?

<u>F. Collamati et al.</u>

R [mm]

- much more challenging in the tracker: many low energy particles much more challenging than
 - a few higher energy ones

12

Number of Hits

Number of Hits

	Maximum Dose (Mrad)		Maximum Fluence (1 MeV-n	
	m R=22~mm	R=1500 mm	m R=22~mm	R = 1500 :
Muon Collider	10	0.1	10^{15}	10^{14}
HL-LHC	100	0.1	10^{15}	10^{13}

despite large amount of BIB, fluence/doses are comparable to the HL-LHC

 $\mathrm{neq}/\mathrm{cm}^2)$ \mathbf{mm}

Muon Collider Forum Report

	Maximum Dose (Mrad)		Maximum Fluence (1 MeV-n	
	m R=22~mm	R=1500 mm	m R=22~mm	R = 1500 :
Muon Collider	10	0.1	10^{15}	10^{14}
HL-LHC	100	0.1	10^{15}	10^{13}

despite large amount of BIB, fluence/doses are comparable to the HL-LHC

this is because muon collider circulate only two bunches, so collisions are far less frequent

$$t = 33 \ \mu s \times \left(\frac{L}{10 \ \mathrm{km}}\right)$$

$$m mm^{2})$$

Muon Collider Forum Report

another plus: BIB looks nothing like signal

photons, electrons, neutrons

(0.003% of a BIB event)

BIB properties: arrives largely out-of-time extremely low energy emerges from nozzles

once reconstruction has been performed, easy to differentiate from signal

Daniele Calzolari

another plus: BIB looks nothing like signal

(removing photons), electrons, neutrons

(0.03% of a BIB event)

BIB properties: arrives largely out-of-time extremely low energy emerges from nozzles

once reconstruction has been performed, easy to differentiate from signal

Daniele Calzolari

Another key background

incoherent e+e-scattering

these particles are low energy and come from the IP a strong magnetic field can prevent many from interacting with the detector

Daniele Calzolari

Can we do better?

original detector design taken from CLIC (optimized for 3 TeV)

the MAP program optimized nozzles using MARS BIB simulation (at 1.5 TeV)

> many efforts to optimize design in recent years, including focus on 10 TeV

tungsten: showers charged particles borated polyethylene: moderates neutrals

Work in progress: a technical nozzle design including structural support

Donatella Lucchesi et al. 19

Can we do better?

Studied tweaks to the position of the innermost nozzle tip

Nozzle details have a strong impact on radiation in pixel detectors

Constrained by physics acceptance: currently at $\theta = 10^{\circ}$ (i.e. $\eta = 2.44$)

these backgrounds are the drivers for detector design

how can we approach them?

In the tracker...

occupancy is the challenge: see O(100,000) BIB hits compared to O(10-100) signal hits

Daniel Ally, Larry Lee

In the tracker...

occupancy per layer translates directly into feature size and timing resolution requirements (targeting ~1%) (could play with feature size vs. timing emphasis)

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mu\mathrm{m} imes25\mu\mathrm{m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu\mathrm{m} imes10\mathrm{mm}$
Sensor Thickness	$50\mu{ m m}$	$100\mu{ m m}$	$100\mu{ m m}$
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$
Spatial Resolution	$5\mu{ m m} imes5\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$

Detector Performance Report 23

In the EM calorimeter...

BIB is extremely diffuse, reduced drastically by the end of the ECAL

pick out from BIB

(both made in a phi slice of 0.1, -1 to 10 ns)

In the EM calorimeter...

Baseline ECAL is W+Si, 5x5 mm cell size but also investigating crystal calorimetry (CRILIN)

sub-ns timing resolution can further reduce BIB contamination

integration time equally important

Detector Performance Report, S. Ceravolo et al.

In the hadronic calorimeter...

BIB reduced by ECAL, still very diffuse, mostly neutrons remain

Signal still distinct, but stands out less over backgrounds

(both made in a phi slice of 0.4, -1 to 10 ns)

In the hadronic calorimeter...

Not surprising: there are many high-energy neutrons in **BIB**

These high-energy neutrons are extremely out-of-time – even ns precision can help a lot here

Baseline is 30x30 mm² scintillating tiles alternating with steel absorbers

Detector Performance Report

In the forward region...

very little BIB makes it through the calorimeter so most of the muon system is straightforward

backgrounds are concentrated in the forward region, near the beam – will need to handle high rate

also impacts forward luminosity monitoring (BIB not correlated with luminosity)

Reading out the detector...

much slower event rate than what we're accustomed to

$$t = 33 \ \mu s \times \left(\frac{L}{10 \ \mathrm{km}}\right)$$

	Readout Window	E Threshold	Hit Size	Total Rate	
Tracker	1 ns	n/a	32 bits	~30 Tb/s	same as the CMS
ECAL	15 ns	0.2 MeV	20 bits	~30 Tb/s	
HCAL	15 ns	0.2 MeV	20 bits	~3 Tb/s	HL-LHC max HLI
Total				60 Tb/s	input rate

plenty of time to process a given event

but reading out all BIB hits requires increased cabling, cooling

pushes the challenge from trigger to on-detector processing

Thinking about higher energies...

3 TeV: "CMS-like"

10 TeV: "ATLAS-like"

increase depth of calorimeters move solenoid inside calorimeter

Thinking about higher energies...

10 TeV: "ATLAS-like"

Federico Meloni, Rose Powers, Elise Sledge

Can we do physics?

actively exploring algorithms for

 10^{-3}

0.0

0.2

0.4

0.6

Collision Product Efficiency

0.5

reducing impact of BIB Background hits overlay in [-0.5, 10] ns range 10^{0} resolution $\sigma_{\rm E}/{\rm E}$ $\sqrt{s} = 1.5$ TeV Circular Muon Collider MARS15 BIB, CLIC_03_v14_mod4 Vertex Detector 10⁰ Photon energy 10^{-1} BIB Efficiency 0.98 0.99 1.00 10^{-2} $\sigma(t) = 50 \text{ ps}, \sigma(\theta) = 2 \text{ rad}$ 100 ps, 0.1 rad 50 ps, 0.1 rad 20 ps, 0.1 rad 10⁻² 0 ps, 0 rad

0.8

1.0

Muon Collider Forum Report, F. Meloni, D. Ally et al., M. Carsarsa

In conclusion...

big progress in recent years in building a detailed understanding of muon collider detector needs

> with the HL-LHC upgrades, we're close to having the technical expertise to build this detector

still lots to be done: further MDI optimization detector design including support and services more sophisticated reconstruction and BIB rejection

and of course: all of the detector R&D to help get us the timing and on-chip intelligence we need

33

Thank you!

