FASER: Recent Results and Prospect (FASER2 & FASERv2)

Shih-Chieh Hsu University of Washington

References from Jamie Boyd, Josh McFayden (FASER2 Contact), Akitaka Ariga, Tomoko Ariga (FASERv2 contact) and Olivier Salin in <u>FPF7</u> and <u>PBC Mar 24</u>

DPF FPF Symposium May 15 2024, Pittsburgh

Timeline

(talk by Ansh Desai)

Timeline

						↓ No	WC								
2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
LHC Run 2				LHC Run 3		1					LHC Run 4				
FASE	FASERv 2203.05090 PBC LOI TDR										Data taking				
pilot ı	run	P	and the second s	(Snow	mass)	revie	W			Will Have	2 Community				
First candidate of collider neutrino			Firs col	irst observation of collider neutrinosFirst measurements of collider ν _e & ν _μ OPEL 121 (2022) 2.021801or Viv:2402.12520							Precision neutrino measurements, ν _τ , lepton flavor				
<u>PRD 104, L091101 (2021)</u> <u>PRL 131 (2023) 3, 031801</u> <u>arXiv:2403.12520</u> (talk by <u>Ali Garabaglu</u>)										unive	rsality, e	etc.			
Dark Photon searchAxial-like particles searchPL B 848 (2024) 138378CONE-2024-001											Comprehensive Long-lived				
										particle search					

(talk by Ansh Desai)

Broad Physics Program

- Beyond Standard Model Physics
 - Dark photon, Dark Higgs, ALP, Heavy Neutral Leptons (Talk by <u>Alec Hewitt</u>, <u>Misa Toman</u>, <u>Roshan Mammen Abraham</u>)


```
https://arxiv.org/abs/2203.05090
(Snowmass 2021)
```

• Standard Model Physics

- Neutrino factories, PDF
- studies $10^3 10^4 v_{\tau}$ interactions (Talk by <u>Max Fieq</u>, <u>Jesus Miguel</u> <u>Celestino</u>, <u>Diego Lopez Gutierrez</u>)

Experiments in Forward Physics Facility

Cryo equipment, electronics racks etc...

FASERv2

Emulsion based neutrino detector

AdvSND

electronic neutrino detector (Consider in TI18 while reserving space for it.)

FLArE

LAr based neutrino detector

Optimal experimental configuration

FASER2

FASER2 baseline detector

• Decay volume ~650X

• from 0.03 m²x 1.5 m (FASER) to \sim 3 m² x 10 m (FASERv)

FASER2 baseline detector: general consideration

Detector Requirement and Performance

- Maintain high physics sensitivity for a variety of physics benchmarks.
- Motivation for Detector Design with less granularity and magnetic field at the edge
 - Near Line of Sight (LOS): particles are highly boosted (around 1 TeV),
 - At 1m from LOS: significant reduction in boost
- Motivation for Square-Shaped Detector:
 - Muon background increases with distance from LOS in the horizontal plane
 - A square-shaped detector (e.g., 1.7m x 1.7m) is preferred over rectangular shapes (e.g., 3m x 1m)

FASER2 baseline detector

Tracker:

- Based on LHCb's SciFi tracker
- SiPM and scintillating fiber design
- Detector resolution: ~80 μm

Magnet:

- Based on the SAMURAI style
- Large aperture
- 3m wide x 1m gap
- Superconducting technology
- Magnetic Field : 2-4 Tm

Calorimeter:

- Based on dual-readout calorimetry
- Spatial resolution: 1-10 mm

FASER2 Magnet: SAMURAI style magnet

- Based on SAMURAI
 - **Dimension**: 3m wide X 1m gap X 4m along LOS
 - Integrated field: 4 Tm
 - Stored energy: 7 MJ
 - Power consumption: 36.2 kW
 - **Superconducting:** Cryogenic infrastructure needed
- On going study to optimise magnet design:
 - Reduce field strength: 2 Tm
 - Enlarging pole gap to 2 m with reduced width

FASER2 Tracker: SciFi Technology

- Based on SciFi detector installed in LHCb in LS2
 - SiPM + Scintillating fiberdesign
 - Resolution ~ 80 μm (fibers diameter 250 μm)
- FASER2 tracking station layout
 - Active area of 3m X 1m
 - Composed of vertical and horizontal fiber layers
 - Stations relatively rotated e.g angle of 1°
- Cost could be reduced by utilizing LHCb, e.g. tooling or available modules

FASER2 Calorimeter: Dual-readout technology

- Design based on dual readout calorimeter prototype
 - Prototypes for Higgs factory detector
 - EM prototype and HiDRa prototype (INFN)
- FASER2 calorimeter design:
 - Fiber diameter 1 mm, 2 mm brass collar
 - Spatial resolution: ~ 5 mm
 - Less granular for outer regions of the detector to reduce number of channels
 - EM energy resolution:

$$\frac{\sigma}{E} = \frac{14.5\%}{\sqrt{E}} + 0.1\%$$

Tracking Performance based on ACTS

Hypothesis for ACTS implementation:

- Homogeneous material and accurate X0
- Tracker resolution digitized as 100 µm
- Constant magnetic field within the magnet volume
- Truth track finding algorithm

FASER2 muon acceptance from FLArE

Muon from neutrino interaction in FLArE simulated in detailed Geant4 simulation To maximise the muon acceptance from FLArE(and FASERnu2) into FASER2

- Minimising distance between FASER2 and FLArE
- Increasing the pole gap of the SAMURAI magnet option is prefered

Alternative Technology

Magnet

TESLA Electronics (UK)

Toshiba (Japan)

Tracker

Calorimeter

SciFi

Dual-readout

SciFi Silicon pixels

ATLAS Micro Megas

LHCb Run5 Mighty pixel

Reuse LHCb preshower

FASER_{v2}

FASERv and FASERv2: expected number of events

F. Kling and L.J. Nevay, "Forward Neutrino Fluxes at the LHC", <u>Phys. Rev. D 104, 113008 (2021)</u> J.L. Feng et al., "The Forward Physics Facility at the High-Luminosity LHC, <u>2023 JPGNPP 50 030501</u>

		$v_e + \overline{v_e}$ CC	$ \begin{array}{c} \nu_{\mu} + \overline{\nu_{\mu}} \\ \mathbf{CC} \end{array} $	$ \begin{array}{c} \nu_{\tau} + \overline{\nu_{\tau}} \\ CC \end{array} $	$v_e + \overline{v_e}$ CC		$v_{\tau} + \overline{v_{\tau}}$ CC
	v int.	0.9k	4.8k	15	3.5k	7.1k	97
FASER v (1.1 tons, 150 fb ⁻¹)	u int. with charm	~0.1k	~0.5k	~2	~0.4k	~0.7k	~10
(u int. with beauty	-	~0.05	-	-	~0.1	-
	v int.	178k	943k	2.3k	668k	1400k	20k
FASERv2 (20 tons, 3 ab^{-1})	u int. with charm	~20k	~90k	~0.2k	~70k	~100k	~2k
	u int. with beauty	~2	~10	~0.02	~7	~10	~0.2

(v int. rate estimated using Sibyll 2.3d)

(DPMJET 3.2017)

20x target mass 10x rec

10x recorded data \rightarrow **200x** more neutrinos

Status of FASERv2 tasks

- Emulsion films performance tests
- Tungsten target
 - 2-mm-thick tungsten plates to reduce number of films
- Mechanical structure, assembly method, cooling system
- Emulsion readout system
 - 2nd facility in Chiba University in addition to Nagoya University
- Veto, interface tracker and charge ID

Detector assembling on site

- FASERv assembly (10 days) + transport (1day) approach is **NOT** scalable!
- Idea: Keep the box and tungsten plates always underground, but exchange films only

6kg Steel plates x 20

Prototype production / test in Spring –Summer 2024

2 mm thickness films in the FASERvdata

Reduce the emulsion cost (2M CHF/year \rightarrow 1M CHF/year). lacksquare

Bkg (~ $10^5 \mu$ /cm²)

Interface Tracker (IFT)

- Goal: Identify charge of muons $v_{\mu}, v_{\tau} \leftrightarrow v_{\mu}, v_{\tau}$
 - Interface FASERv2 and FASER2
 - Three technical options are currently considered: SciFi, Gaseous, Silicon Strip

Summary

• FASER2 increases ~650x FASER decay volume

- Magnet: Finalize transverse shape of magnet with SAMURAI (baseline) and alternatives as well as considering acceptance of muons from neutrinos
- Tracker: Assess suite of possible tracker technologies SciF (baseline) and alternatives
- Calorimeter: Design and costing from existing prototype
- FASERv2 aims ~200× FASER v interaction statistics
 - Long term performance test with Test Beam 2023 (also TB 2024)
 - Prototypes to test assembling scheme
 - Reconstruction with reduced segmentation demonstrated
 - Choice of interface detector

• Work toward the PBC document (summer 2024)

- Physics studies with benchmark models to assess detector performances
- Detector options with more or less cost/complexity

Backup

Muon flux map measurement

To validate the FLUKA/BDSIM simulations, emulsion data were collected in the region ~2 m from the LOS

FASEF	Rtunnel			FASERv preliminary				
	(l				track density (/cm²/fb⁻¹) (within 10 mrad from the peak)			
n _		x mod	iules <mark>↑ </mark>	height=150 cm	5.1×10 ⁴			
			* •	height=50 cm	1.5×10 ⁴			
				height=0 cm	1.0×10 ⁴			
	_		1 50 cm					
	beam 🤇		FASERv	FASER <i>v</i> 1st module	1.2×10 ⁴			

19 small emulsion detectors 9.5 fb⁻¹, July-Sep 2022

Contents

1	Introduction	4
2	Physics motivation and benchmarks	4
	2.1 Long-lived particle search	5
	2.2 FASER-2 spectrometer for neutrino physics	6
	2.3 Goal and requirement for the detector	7
3	FASER-2 detector concept	7
	3.1 Baseline design: Samurai-like magnet	8
	3.2 Alternative design: Industrial magnet	8
	3.3 FASER-2 designs scenarios	9
4	Simulation tools	9
	41 FORESEE	9
	4.2 Geant4 simulation	9
	4.3 ACTS simulation	9
	4.3.1 ACTS: A Common Tracking Software	0
	4.3.2 FASER 2 implementation of ACTS	10
	4.5.2 PASEA-2 implementation of ACTS	10
5	LLP sensitivity	10
	5.1 Decay volume	10
	5.2 LLP decay product separation	11
c	Neutrino accentance	14
0	6.1 Much acceptance	14
	6.1 Muon acceptance into FASER-2: Analytical extrapolation	14
	6.2 Muon acceptance from FLATE into FASEA-2: Geant4	10
	6.2.1 FPF options	10
	6.2.2 Muon acceptance	17
7	Tracking performance	18
	7.1 Trackers design	18
	7.1.1 Tracker resolution	18
	7.1.2 Tracker material budget	18
	7.2 Magnet design comparison	19
	7.2.1 Samurai style magnet	19
	7.2.2 Industrial Silicon Crystal pulling magnets	19
	7.3 Vertex resolution	20
	7.4 LLP models and masses	20
8	Alignment studies	20
9	Benchmark detectors	21
	9.1 Benchmark A	21
	9.2 Benchmark B	21
	nanne senannan an heisige senannan sena annannan an annannan an haide senannan an said said said said said said	1035
10) Todo list	22

- FASER2 physics studies and detector performance documentation in preparation
 - Requirement for the detector
 - Summarise performance studies
 - Sensitivity plots, Track reconstruction, neutrino acceptance
 - Benchmark detectors performances comparison
- Basis of our input for PBC document (summer 2024) and FPFLoI

FASER2 Alternative design: Crystal puller magnet

Possibility to use off-the-shelf crystal puller magnets with similar sensitivity to SAMURAI

- 1. Both of those Industrial Crystal puller magnet: Central field of 0.4 0.5 T
- 2. Can be chained together to have increased integrated magnetic field
- 3. Aperture diameter of 1.6 m (up to 2 m)
- 4. Advantages: Off the shelf, no R&D needed, cryo system integrated into design

TESLA Electronics (UK)

Toshiba (Japan)

FASER2 Alternative design: Tracker proposals

• Pixel Mighty tracker (LHCb Run 5)

- Mighty pixels modules in central region of tracking layers
- Achieve better resolution on layer before magnets ~ 50 µm
- Better separation for close-by tracks in central region

• Gaseous trackers

- MPDG tracker option for FASER2:ATLAS Micro Megas, CMS GEM, µ-RWELL
- Less than 1 MCHF for 10 layers
- Less than 1 MCHF for the electronics
- For MGTD option discussion within RD51 collaboration
- Studies needed for reconstruction of closely separated tracks

ATLAS Micro Megas

28

FASER2 Alternative design: LHCb preshower

- Possibility to reuse old LHCb Preshower and Scintillating Pad Detector for part of the FASER2 calorimeter (outer region of the calorimeter)
- Considerable possible cost saving
- Simulation studies in progress to investigate feasibility and performance

FASER2 BSM Physics

FASER2 SM Physics

Main spectrometer to neutrino experiments for the FPF (FLArE, FASERnu2)

FASER2 baseline detector: costing

- Previous costing estimation in the region of 20 MCHF
 - Cost mainly driven by magnet quotation (10 MCHF)
- Overall cost could be significantly lower than original estimate
 - Updated quotes for magnet is closer to 5 MCHF
 - Investigation for reduced complexity for tracker and calorimeter

Cost

Construction 4.7M CHF. Emulsion 1M CHF/years

Item	Cost (kCHF)	How many years	Sub-total	Comments
Fixed costs				
				2-mm-thick 40x40 cm ² , 3300 plates
Tungsten	2000		2000	+10%
Emulsion readout	1700		1700	
Expert of the readout				
system	500		500	
Veto / interface detectors	200		200	
Support structure	400		400	
Cooling system	100		100	
Annual cost				
Emulsion	1000	10	10000	40x40 cm ² , 3300 films
Chemicals for development	50	10	500	
Personnel for scanning	50	10	500	
Total			15900	

Sweeper magnet to reduce BG muons

To increase the duration of data taking with a FASERv2 detector, a reduction of muon rate is vital

- Maximum track density in emulsion should be kept below ~5x10⁵ tracks/cm² 2 months without muon reduction
- Install a sweeper magnet upstream to reduce the muon flux
- Previous studies by CERN FLUKA team showed a pessimistic result
- Further effort is needed! Simulation studies with BDSim or others

ECN3 decision now made to move forward with SHiP

Other related talks in DPF

- Anesh Desai New Physics at FASER (May 13)
- Ali Garabaglu FASER Neutrino (May 14)
- Alec Hewitt <u>Heavy Neutral Leptons with FASER2 (May 14)</u>
- Max Fieg <u>Neutrino-Ion Collider for PDF with FASER/SND/FPF (May 14)</u>
- Jesus Miguel Celestino <u>FASERnu/nu2 nuon-unitarity of leptonic mixing matrix</u> (May 15)
- Diego Lopez Gutierrez Tau trident in DUNE and FASER (May 16)
- Misa Toman <u>Dark photon Spin correlation at FASER (May16)</u>
- Roshan Mammen Abraham Probing muon g-2 with FASER2 (May 16)

FASER2 Contact: Jamie Boyd, Josh McFayden https://twiki.cern.ch/twiki/bin/view/FASER/FASER2 FASERnu2 contact: Akitaka Ariga, Tomoko Ariga

FPF7 Feb 29-Mar 1 2024 <u>https://indico.cern.ch/event/1358966/</u> PBC Mar 25-27 2024 <u>https://indico.cern.ch/event/1369776/</u> FASER2 <u>https://indico.cern.ch/category/16035/</u> FASERnu2 <u>https://indico.cern.ch/category/16945/</u>