

Scattering and Neutrino Detecto at the LHC

SND@LHC Recent results and future prospects

Oliver Lantwin on behalf of the SND@LHC collaboration DPF-PHENO 2024 – 15 May 2024

[oliver.lantwin@cern.ch]

Location

- About 480 m away from the ATLAS IP in a former service tunnel, TI18
- Symmetric to TI12 tunnel where FASER is located

- > Charged particles deflected by LHC magnets
- > Shielding from the IP provided by 100 m rock
- > Angular acceptance: $7.2 < \eta < 8.4$

Neutrino physics at the LHC

The LHC is a unique facility for the study of energetic neutrinos and for measuring $pp \rightarrow \nu X$ in an unexplored domain

PRL 122 (2019) 041101

- > XSEN [1804.04413]
- Physics potential of an experiment using LHC neutrinos [1903.06564]
- Further studies on the physics potential of an experiment using LHC neutrinos [2004.07828]

The SND@LHC experiment

Veto system:

- > Tag penetrating muons using plastic scintillator
- > **New in 2024:** 3rd plane added for improved coverage and efficiency

Vertex detector and EM calorimeter:

- Emulsion cloud chambers (Emulsion+Tungsten) for neutrino-interaction detection
- Scintillating fibers for timing information and energy measurement

Hadronic calorimeter and muon

system:

 Iron walls interleaved with plastic-scintillator planes for fast time resolution and energy measurement

Technical Proposal LHCC-P-016, detector paper arxiv:2210.02784 (to appear in JINST)

Hadronic calorimeter test beam

- > Very successful test beam data taking campaign in August 2023.
 - > Exact replica of the hadron calorimeter.
 - Downsized mockup of the target with narrow beam spot
- Calibrated calorimeter response, confirming expected performance

pp collision data

Successful data-taking since the beginning of Run 3

- $\,$ > Detector operation uptime $\sim 97\%$
- > Total recorded luminosity: 68.6 fb^{-1} in 2022 and 2023 (and already > 14 fb^{-1})
- > Six emulsion replacements in 2022 and 2023 (limit exposure to 20 ${\rm fb}^{-1}$, equivalent to $<4\times10^5~{\rm tracks/cm^2})$
- > Dummy target for the LHC ion runs at the end of 2023

Muon flux measurement

- Backgrounds to neutrino signals in SND@LHC are mainly due to muon interactions in the tunnel walls.
- Precise measurements of the muon flux allow for validating and constraining our background model.

System	Muon flux [10 ⁴ fb/cm ²]
SciFi	2.06 ± 0.01 (stat.) ± 0.12 (sys.)
DS	2.02 ± 0.01 (stat.) ± 0.08 (sys.)

 Measurements with the SciFi tracker, downstream muon system and emulsion detectors give consistent results.

Muon neutrino observation update

Phys. Rev. Lett. 131, 031802: 8 muon neutrino candidates in 2022 data, at 6.8 σ New this year: Add 2023 data and extend fiducial volume

Number of events observed: 32

Number of events expected in 68.6 fb^{-1} :

- > Signal: 19.1 ± 4.1
- > Neutral hadrons: 0.25 ± 0.06
- Kinematics in good agreement with simulation

Observation of 0 μ neutrino events (ν_e CC + ν_{all} NC)

Neutral hadron background

- > Define background-dominated control region.
- Scale the background prediction to the number of observed events in the control region.
 - Observed neutral hadron background is 1/3 of the predicted value.
- > Events expected in signal region: 0.01

Neutrino background

- > Muon neutrino CC interactions expected: 0.12
- > Tau neutrino CC (1µ) interactions expected: 0.002

0μ observation signifiance

- > Total expected background: 0.20 ± 0.11 events
- > Expected signal: 4.7 events
- > Expected significance: 4.9 σ

Signal region: $> 11 \times 10^3$ 6 event observed (5.8 σ) Paper in preparation

Search for v_e CC interactions in the emulsion target

- > Use track overdensities in subsequent plates to identify shower candidates
- Select shower profiles consistent with electromagnetic showers
- Match to reconstructed neutral vertices and showers seen in

Some promising candidates have been identified, full analysis ongoing

AdvSND

Upgrade of the detector in view of Run 4 using electronic vertex trackers

Two off-axis forward detectors:

AdvSND-near: $4 < \eta < 5$

- > Overlap with LHCb η coverage
- > Reduction of systematic uncertainties
- > Provide normalization
- > After Run 4, Location TBD (UJ57?)

	SND@LHC	AdvSND-far	
η	[7.2, 8.4]	> 7.9	
mass [t]	0.6	2	
neutrino yield	1.4×10^4	2.3×10^5	

AdvSND-far: $7.9 < \eta$

- > Acceptance similar to SND@LHC
- > Magnet for charge separation
- > In TI18 or FPF
- > Run 4

SND@SHiP

> SND@LHC evolution of proposed subsystem of SHiP, now SND@LHC and AdvSND allow developing and perfecting technologies for SHiP

- > Emulsion (SND@LHC-like) and Si options (AdvSND-like) under study
- > SPS offers possibilities complementary to HL-LHC, lower energy and boost, space, large (anti-)neutrino yields (approx. $10^6 \nu_e$, $10^7 \nu_\mu$, $10^5 \nu_\tau$)

Conclusion

SND@LHC is a brand new experiment for neutrino physics and feebly interacting particle searches at the LHC

- > Successful datataking in 2022 and 2023 with 68.6 fb^{-1} collected and an uptime of ~ 97%, with 290 fb^{-1} in total expected in Run 3 (and already > 14 fb^{-1} in 2024)
- > Muon neutrino observation updated with refined selection and 2023 data
- Observation of shower-like neutrino events with electronic detectors, complementing electron-neutrino search in progress with emulsion data
- > Upgrade for HL-LHC and SND@SHiP offer exciting prospects beyond Run 3
 - > AdvSND LoI submitted to LHCC
 - > SHiP (including SND@SHiP) approved for TDR

The next years will be exciting!

Backup

0µ candidates

u_{μ} candidate

- > Fiducial volume shown in orange
- Original search excluded second and last wall, which were now added.
- > Matching to emulsion data under study

AdvSND can test a variety of models, with proof-of-concept measurements possible at SND@LHC

For SHiP sensitivities, see e.g. the BDF/SHiP@ECN3 proposal and references therein

2024 data

The beam dump facility

High intensity proton beam line: 4×10^{19} PoT per year for 15 years, with annually:

- $\, > \, 1.4 \times 10^{13}$ beautry hadrons
- $ightarrow 2 imes 10^{15}$ tau leptons
- $\rightarrow \mathcal{O}(10^{20})$ photons above 100 MeV

Unprecendented samples of all neutrino flavours:

	<e> [GeV]</e>	beam dump	<e> [GeV]</e>	SND target acceptance	<e> [GeV]</e>	CC DIS interactions
N_{ν_e}	6.3	4.1×10^{17}	30	1.3×10^{16}	63	2.8×10^6
$N_{\nu_{\mu}}$	2.6	$5.4 imes 10^{18}$	8.4	$1.5 imes 10^{17}$	40	8.0×10^6
$N_{\nu_{\tau}}$	9.0	2.6×10^{16}	22	1.0×10^{15}	54	8.8×10^4
$N_{\overline{\nu}_e}$	6.6	$3.6 imes 10^{17}$	22	$9.3 imes 10^{15}$	49	5.9×10^5
$N_{\overline{\nu}_{\mu}}$	2.8	3.4×10^{18}	6.8	1.2×10^{17}	33	1.8×10^{6}
$N_{\overline{\nu}_{\tau}}$	9.6	2.7×10^{16}	32	$1.0 imes 10^{15}$	74	6.1×10^4

For muonic ν_{τ} , charge determination possible, precision $\bar{\nu}_{\tau}$ measurements! $\frac{\text{Decay channel}}{\tau \to \mu} \frac{\nu_{\tau}}{4 \times 10^3} \frac{\overline{\nu}_{\tau}}{3 \times 10^3}$ $\frac{\tau \to h}{\tau \to 3h} \frac{27 \times 10^3}{11 \times 10^3}$ $\frac{\tau \to e}{8 \times 10^3}$ $\frac{\tau \to 10^3}{10^3}$

BDF beyond SHiP

Space for other experiments (by independent collaborations) upstream and downstream of SHiP

e.g. TauFV, skim % of protons

 Target complex also offers unprecedented neutron fluxes for materials and rad-hard electronics testing

e.g. LAr TPC for scattering studies, benefit from high signal fluxes, protected by the SHiP muon shield