Physics of Higgs factories

Peter Higgs, R.I.P. April 2024 May 13-17, 2024

Christoph Paus, MIT

DPF-PHENO 2024 in Pittsburgh

What is a Higgs factory?

First stab

- A collider where you make many, many, Higgs bosons
- HL-LHC: ~180M Higgs bosons produced (60 pb) at 3 ab⁻¹
- ... but the efficiency is low and there is a lot of background
- FCC-ee: ~1.5M Higgs bosons produced ...

Refining

- Many Higgs bosons produced that can be efficiently used for analysis
- Background and general beam crossing environment matters
- Usefulness of the initial state cannot be understated
- Also non-Higgs physics is interesting

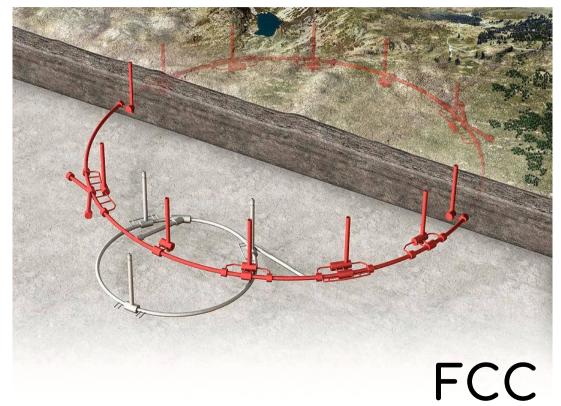
Linear Colliders

ILC, C3, CLIC

- Energy reaches to TeV
- Easier to use long. polarized beams

THE CONTRACTOR OF CONTRACTOR OF

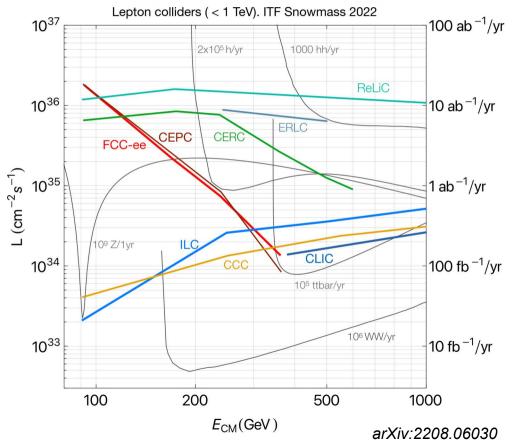
Main Linac


Damping Rings

- Low radiation
- Collisions in bunch trains
- Energy efficient

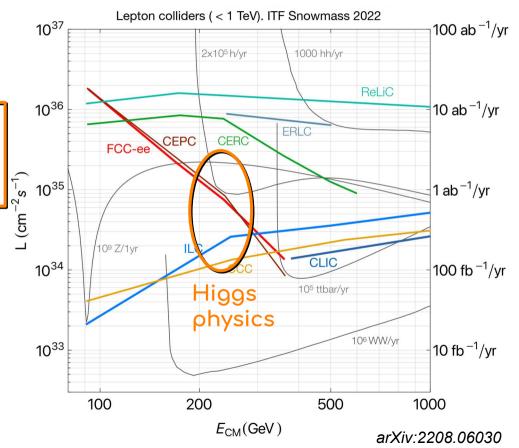
Circular Colliders

FCC-ee, CEPC


- Beams circulate after collisions
- Highest luminosity at Z/WW/ZH
- Synchrotron radiation limits energy range
 < 400 GeV
- Less energy efficient

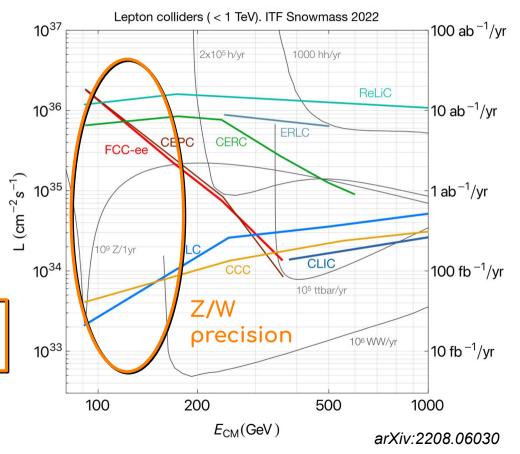
Physics Potential

- Driven by the number of Higgs bosons produced
- Linear and Circular options promise ~ same number of Higgses for proposed running


- Very different
- Precision Z and W program at circular collider
- Extension to higher energies feasible with linear colliders

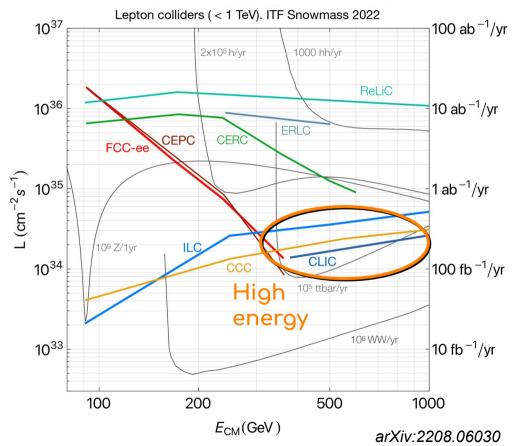
Physics Potential

- Driven by the number of Higgs bosons produced
- Linear and Circular options promise ~ same number of Higgses for proposed running


- Very different
- Precision Z and W program at circular collider
- Extension to higher energies feasible with linear colliders

Physics Potential

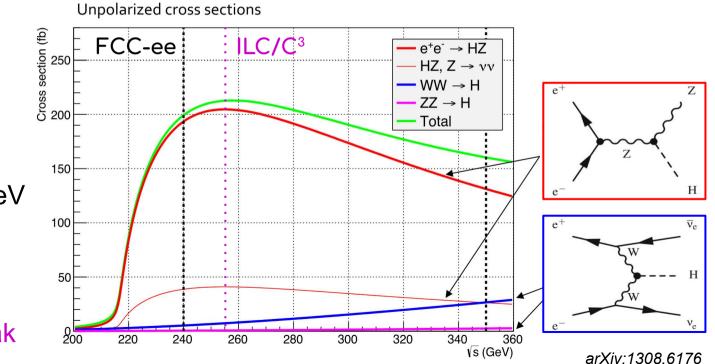
- Driven by the number of Higgs bosons produced
- Linear and Circular options promise ~ same number of Higgses for proposed running


- Very different
- Precision Z and W program at circular collider
- Extension to higher energies feasible with linear colliders

Physics Potential

- Driven by the number of Higgs bosons produced
- Linear and Circular options promise ~ same number of Higgses for proposed running

- Very different
- Precision Z and W program at circular collider
- Extension to higher energies feasible with linear colliders


Higgs Production

ZH Threshold turns on at 91 + 125 GeV = 216 Ge reaches a maximum at around 255 GeV

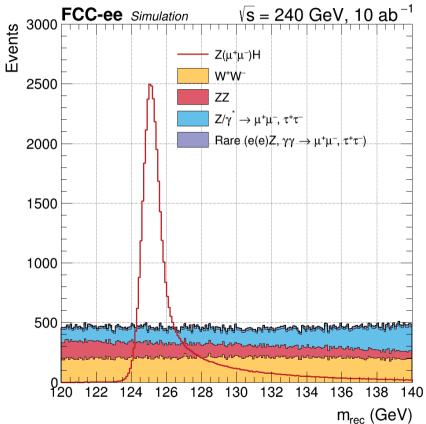
Vector boson fusion rises steadily but is small

FCC-ee: most Higgses at 240 GeV for FCC-ee considering lumi profile

ILC/C³ best at peak

Higgs Reconstruction

Leading strategy

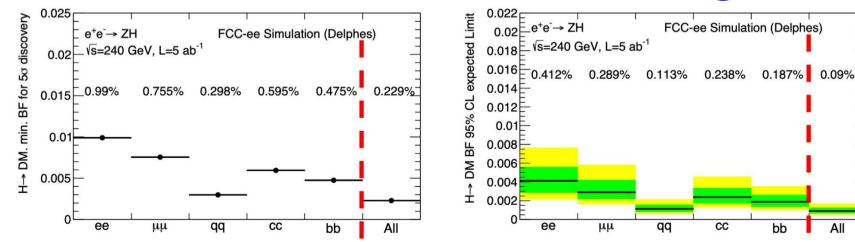

- Tag the Z boson (leptons or jets)
- Recoil mass peaks sharply at Higgs mass

 $m_{recoil}^2 = \left(\sqrt{s} - E_{ff}\right)^2 - p_{ff}^2$ $= s + m_Z^2 - 2E_{ff}\sqrt{s} \approx m_H^2$

- Direct Higgs reconstruction not required, model independent σ_{ZH} measurement
- Dominant background: WW, ZZ and Z/ γ^{\star}

Challenges

- Detectors: resolution, tracking, vertexing, timing, angular
- Flavour tagging for Higgs couplings
- Jet reconstruction algorithms



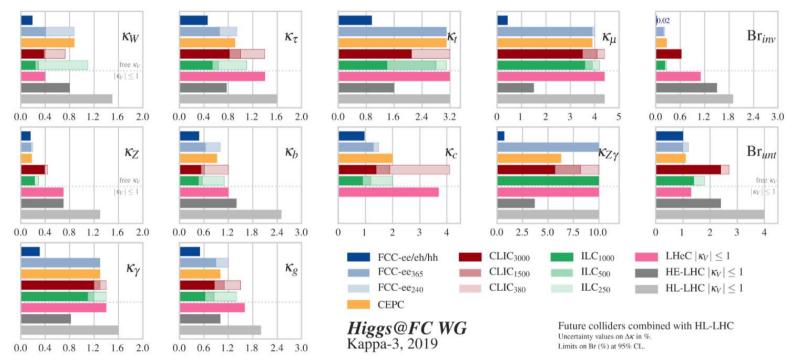
This plot does not work at hadron colliders.

Higgs Invisible Width

Higgs boson: portal to dark world

- Reconstruct recoil mass
- Require no more activity beyond Z boson
- Measure $H \rightarrow ZZ \rightarrow vvvv$
- Then remove as SM background

 e^{-},μ^{-},q


 e^{+}, μ^{+}, \bar{q}

Invisible decay

products

All

Higgs Couplings Precision

Not very dependent on the e⁺e⁻ option

- Sensitivity to Higgs coupling is mostly around a percent
- Details of the uncertainties are dependent on the specific implementations

arXiv:2206.08326

Higgs Couplings Precision

Sensitivity to deviations for

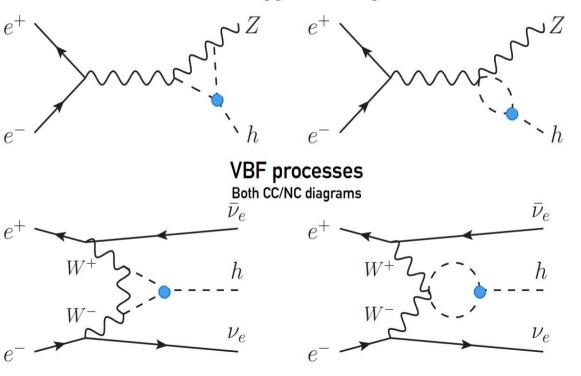
- Different effective **Higgs couplings**
- and aTGC

HL+HELHC HL+LHeC 10² HL-LHC HL+ILC₂₅₀ HL+CLIC₃₈₀ HL+FCC_{ee240} **HEP**fit 10-1 HL+FCCee365 HL+ILC500 HL+CLIC₁₅₀₀ Higgs@FC WG HL+CLIC3000 HL+FCC SMEFT_{ND} fit June 30, 2019 '10⁻² 10 δg_i/g_i[%] 110^{−3} **10**⁻¹ Note logarithmic scale $g_{\text{HZz}}^{\text{eff}} g_{\text{HWW}}^{\text{eff}} g_{\text{H}\chi\gamma}^{\text{eff}} g_{\text{H}gg}^{\text{eff}} g_{\text{Htt}}^{\text{eff}} g_{\text{Hcc}}^{\text{eff}} g_{\text{Hbb}}^{\text{eff}} g_{\text{H}\tau\tau}^{\text{eff}} g_{\text{H}\mu\mu}^{\text{eff}} \delta g_{1Z} \delta \kappa_{\gamma} \lambda_{Z}$ aTGC Higgs couplings arXiv:2206.08326

Higgs Self Coupling

Trilinear Higgs self coupling λ_3

- Probe indirectly
- Single Higgs boson cross
- section

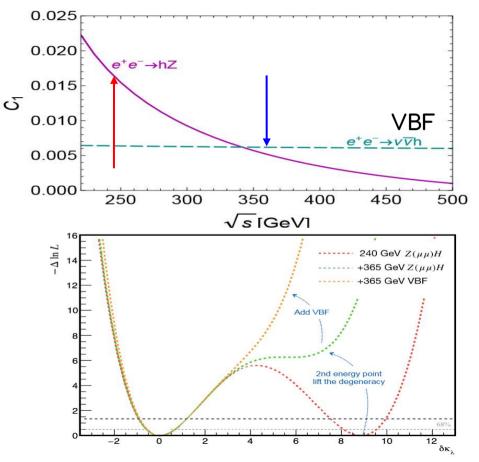

$$\Sigma_{\rm NLO} = Z_H \Sigma_{\rm LO} (1 + \kappa_\lambda C_1)$$

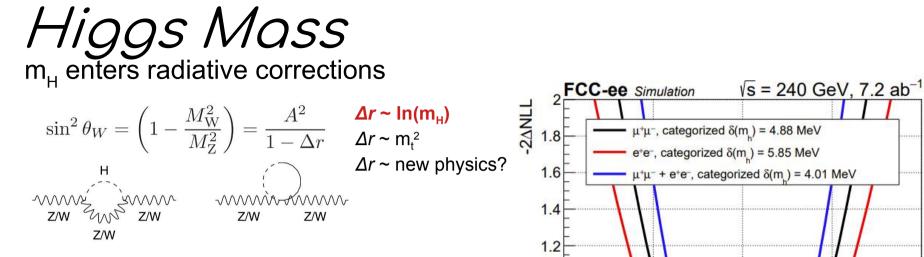
$$\kappa_\lambda \equiv \frac{\lambda_3}{\lambda_3^{\rm SM}}$$

$$\lambda_3^{SM} = \frac{m_H^2}{2\nu^2}$$

$$\mu$$

ZH Higgsstrahlung

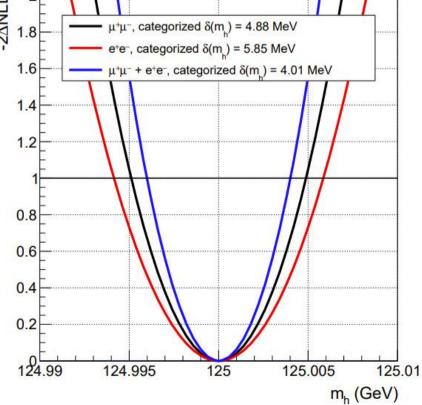

Higgs Self Coupling


Cross section measurement

- Precision of ~1% (relies on $Z \rightarrow qq$)
- Probing NLO deviations from SM $\delta \kappa_{\lambda} = \kappa_{\lambda} 1$
- C1 is sensitive to \sqrt{s}
- Exploit different √s to resolve ambiguities

$$\Sigma_{\rm NLO} = Z_H \Sigma_{\rm LO} (1 + \kappa_{\lambda} C_1)$$

Projecting to reach $\Delta \kappa_{\lambda} \sim 30\%$ (FCC-ee study)

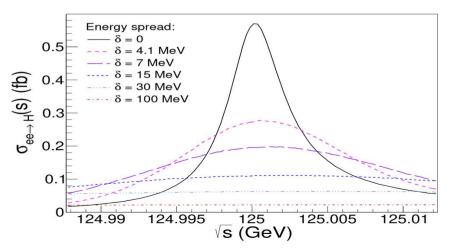


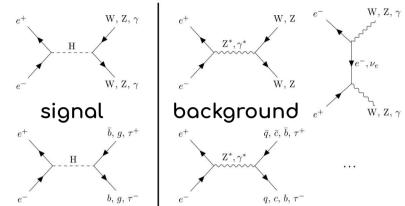
Needs for Higgs factory

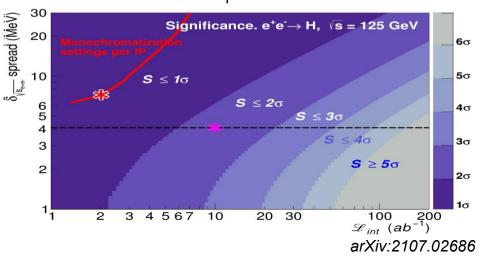
- Cross-sections at sub-percent level
- $\Delta m_{_{\rm H}}$ < O(10) MeV to control radiative corrections

Roadmap for Δm_{H}

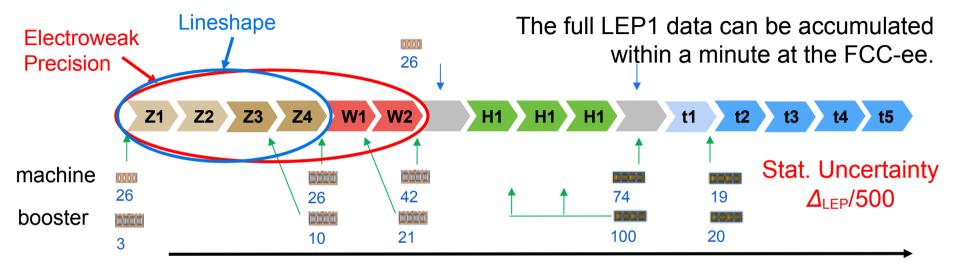
- Now: 150 MeV HL-LHC: 20 MeV
- Higgs Factory: 4 MeV




Electron Yukawa Coupling


Measure $e+e- \rightarrow H \rightarrow e^+e^-$: how?

- $\Gamma_{\rm H}$ is 4.1 MeV, measure m_H at MeV level
- Dial collider E_{CM} to m_H
- Monochromatize energy: ~ 4 MeV spread
- Signal is tiny and background is very large


• 1.3 std significance per IP and per year

'Circular Electroweak Opportunity'

time [operation years]

Working point	Z, years 1-2	Z, later	WW, years $1-2$	WW, later	ZH	$t\overline{t}$	
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 163		240	340 - 350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab^{-1})	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	0	3	1	4
					$1.4510^{6}{ m HZ}$	1.910^{6}	³ t ī
Number of events	$6 10^{12} \mathrm{Z}$		$(2.410^8\mathrm{WW})$		+	+330k	
					45k WW \rightarrow H	$+80\mathrm{kWW}$	$V \to H$

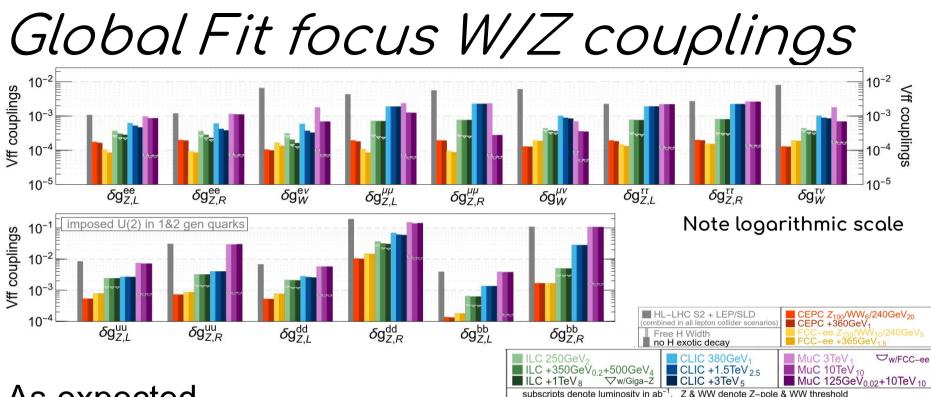
Lineshape Summary

	Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
	$\Delta \alpha(m_Z)^{-1} \; (\times 10^3)$	17.8^{*}	17.8^{*}		3.8(1.2)	17.8^{*}	
	$\Delta m_W \; ({\rm MeV})$	12^{*}	0.5(2.4)		0.25~(0.3)	0.35(0.3)	
C	$\Delta m_Z \ ({\rm MeV})$	2.1^{*}	0.7~(0.2)	0.2	0.004~(0.1)	$0.005\ (0.1)$	2.1^{*}
J	$\Delta m_H \; ({\rm MeV})$	170^{*}	14		2.5(2)	5.9	78
	$\Delta\Gamma_W$ (MeV)	42^{*}	2		$1.2 \ (0.3)$	1.8 (0.9)	
e	$\Delta\Gamma_Z ({\rm MeV})$	2.3*	1.5(0.2)	0.12	0.004(0.025)	$0.005\ (0.025)$	2.3*
0	$\Delta \sigma_{\rm had}^0 ~({\rm pb})$	37*			0.035~(4)	0.05~(2)	37*
Q	$\delta R_e \; (imes 10^3)$	2.4^{*}	0.5(1.0)	0.2 (0.5)	0.004~(0.3)	0.003~(0.2)	2.7
N	$\delta R_{\mu} \; (imes 10^3)$	1.6^{*}	0.5(1.0)	0.2 (0.2)	$0.003\ (0.05)$	$0.003\ (0.1)$	2.7
	$\delta R_{ au} \; (imes 10^3)$	2.2^{*}	0.6(1.0)	0.2 (0.4)	$0.003\ (0.1)$	$0.003\ (0.1)$	6
	$\delta R_b \; (\times 10^3)$	3.0^{*}	0.4(1.0)	0.04~(0.7)	$0.0014 \ (< 0.3)$	0.005~(0.2)	1.8
	$\delta R_c(\times 10^3)$	17*	0.6(5.0)	0.2(3.0)	0.015(1.5)	0.02(1)	5.6

arXiv:2206.08326

Lineshape Summary

С	Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
5	$\Delta \alpha(m_Z)^{-1} \; (\times 10^3)$	17.8^{*}	17.8^{*}		3.8(1.2)	17.8^{*}	
	$\Delta m_W \; ({ m MeV})$	12^{*}	0.5(2.4)		0.25~(0.3)	0.35(0.3)	
ρ	$\Delta m_Z \; ({\rm MeV})$	2.1^{*}	0.7~(0.2)	0.2	0.004~(0.1)	$0.005\ (0.1)$	2.1^{*}
οισ	$\Delta m_H \ ({\rm MeV})$	170^{*}	14		2.5(2)	5.9	78
Ă	$\Delta\Gamma_W ({\rm MeV})$	42^{*}	2		$1.2 \ (0.3)$	1.8 (0.9)	
S	$\Delta\Gamma_Z \ ({ m MeV})$	2.3^{*}	1.5~(0.2)	0.12	$0.004 \ (0.025)$	$0.005\ (0.025)$	2.3*
D	$\Delta \sigma_{\rm had}^0 ~({\rm pb})$	37*			0.035(4)	0.05~(2)	37*
th	$\delta R_e~(imes 10^3)$	2.4^{*}	0.5~(1.0)	0.2 (0.5)	0.004~(0.3)	0.003~(0.2)	2.7
	$\delta R_{\mu} \; (imes 10^3)$	1.6^{*}	0.5~(1.0)	0.2 (0.2)	$0.003\ (0.05)$	0.003~(0.1)	2.7
\mathbf{i}	$\delta R_{\tau} \; (imes 10^3)$	2.2^{*}	0.6(1.0)	0.2 (0.4)	$0.003\ (0.1)$	$0.003\ (0.1)$	6
MM	$\delta R_b \; (imes 10^3)$	3.0^{*}	0.4(1.0)	0.04~(0.7)	$0.0014 \ (< 0.3)$	0.005~(0.2)	1.8
	$\delta R_c(\times 10^3)$	17*	0.6(5.0)	0.2(3.0)	0.015(1.5)	0.02(1)	5.6


arXiv:2206.08326

Asymmetry Summary

Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
$\Delta A_e \; (\times 10^5)$	190*	14 (4.5)	1.5(8)	0.7~(2)	1.5	64
$\Delta A_{\mu} (\times 10^5)$	1500^{*}	82(4.5)	3(8)	2.3(2.2)	3.0(1.8)	400
$\Delta A_{\tau} (\times 10^5)$	400*	86(4.5)	3(8)	0.5~(20)	1.2 (6.9)	570
$\Delta A_b \; (\times 10^5)$	2000*	53(35)	9(50)	2.4(21)	3(21)	380
$\Delta A_c \; (\times 10^5)$	2700*	140(25)	20 (37)	20 (15)	6 (30)	200

A few points to note

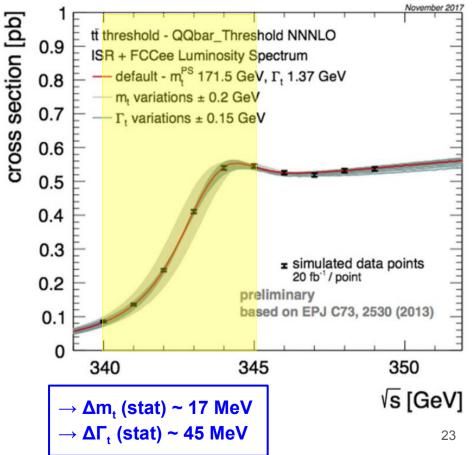
- Z pole running creates substantially improved precision for all 'LEP' measurements by close to 3 orders of magnitude (statistically speaking)
- Major work for experimental and theory community to bring that precision to bear

As expected

• Precision on couplings of W and Z bosons to fermions is more competitive at circular collider

arXiv:2206.08326

Physics at the ft threshold


- Typical plan for top threshold
- 1 yr scan 340–350 GeV: ~ 1.4 ab-1
- 4 yr at 365 GeV: ~ 2.3 ab-1

Measure Top mass and width (similar as WW)

- From HL-LHC: $\Delta m_t = 0.5 \text{ GeV}$
- Width and mass are not fully correlated
- Constrain backgrounds (below) and ttH (above)
- Scan [340, 345], 6 points ~ 25 fb⁻¹ each

At 365 GeV, with 2.3 ab⁻¹

- Top and Higgs properties
- ee $\rightarrow \nu \nu \mu$ H: total XS, couplings, width

Conclusions

Candidates for Higgs Factories split into linear and circular

- Very similar and excellent Higgs physics program
- Detector requirements and designs are very similar too

Physics X-factor of linear colliders

- Center-of-mass energy reach higher and can be extended
- Allows study of four fermion couplings and other new physics

Physics X-factor of circular colliders

- At Z and WW energies the luminosity is substantially larger
- Several order of magnitude improvement of all LEP measurements including couplings to W and Z bosons
- Provide infrastructure for future hadron collider