Detector Concepts for Future Colliders

S. Rajagopalan (BNL)

DPF-PHENO 2024, Pittsburgh

I will focus primarily on FCC-ee

Reveal the Secrets of the Higgs Boson

One of the primary science drivers identified in the P5 report.

- Increased Higgs Production rate during the HL-LHC era will certainly facilitate the precision studies of the Higgs properties.
- "Construct a Higgs factory [using e+e- beams], which would allow precision measurements of the Higgs boson properties and searches for exotic decays, possibly into dark matter."
- "Precision studies of the Higgs self-interaction and searches for possible new spinless particles related to the Higgs require much larger energies per fundamental particle (parton) interaction: on the order of 10 TeV or more."

The physics at e+e- colliders allow a broad, multi-faceted exploration:

- Measure a comprehensive set of electroweak and Higgs observables with high precision
- Tightly constrain a large number of SM parameters,
- Unveil, if any, small but significant deviations from SM predictions,
- Evidence for rare processes/particles beyond SM expectations.

FCC Program

90.7 km ring, 4 Interaction Points

Two stage operation:

- FCC-ee (2045-2060) as Higgs, EW and top factory
- FCC-hh (2070-) continuation with pp, AA collisions

Details in M. Benedikt presentation

FCC-ee (proposes a 4-stage operation)

FCC-ee parameters		Z	W⁺W-	ZH	ttbar
√s	GeV	91.2	160	240	350-365
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	140	20	5.0	1.25
Bunch spacing	ns	25	160	680	5000
"Physics" cross section	pb	35,000	10	0.2	0.5
Total cross section	pb	70,000	30	10	8
Event rate	Hz	100,000	6	0.5	0.1
"Pile up" parameter [μ]	10 ⁻⁶	2,500	1	1 PHENO 202	1

Z-pole: 4 –years (5 x 10¹² Zs • (ref: LEP 10⁷) WW: 2 years (> 10^8 WW) ZH: 3 years (2 x 10⁶ H) tt: 5 years (2 x 10^6 tt pairs)

Timeline

Defines the timescale for completing the R&D and selecting the technologies for detector production

Start		ee physi	ics run
	2047 – 2046 –	- 2047	
Start accelerator commissioning	2045 – 2044 – 2043 –	- 2045 - 2044 - 2043	Start detector commissioning
End of HL-LHC	2042 -	- 2042	Start detector installation
Start accelerator installation	2040 – 2039 – 2038 – 2037 –	- 2040 - 2039 - 2038 - 2037	
Industrialisation and component production Technical design & prototyping completed	2037 - 2036 - 2035 - 2034 - 2033 -	- 2037 - 2036 - 2035 - 2034 - 2033	Detector component production Four detector TDRs completed
Start of ground-breaking and CE at IPs	2033 – 2032 – 2031 – 2030 –	- 2033 - 2032 - 2031 - 2030	Detector CDRs (>4) submitted to FC ³
End of HL-LHC upgrade: more ATS personnel available FCC Approval: Start of prototyping work	2029 – 2028 – 2027 –	- 2029	End of HL-LHC upgrade: more detector experts available FC ³ formation, call for CDRs, collaboration forming
FCC Feasibility Study Report	2027 - 2026 - 2025 -	- 2027 - 2026 - 2025	European Strategy Update: FCC Recommendation Detector Eol submission by the community
FCC-ee Accelerator	Key	dates	FCC-ee Detectors

Challenges at FCC-ee

At the Z pole, high beam currents with bunch spacing 20 ns

Almost continuous beam has implications on power management/cooling, density, readout,...

Extremely high luminosities L ~ 1.8 x 10³⁶/cm²s at Z-pole

- Require absolute luminosity measurements to 10⁻⁴ to achieve desired physics sensitivity
- Online/Offline handling of high data rates/total volume.

Physics interaction rate at Z pole ~ 100 kHz

Implications on detector response time, event size, FE electronics and timing

Beam dynamics

- 30 mrad crossing angle sets constraints on the solenoid field to 2 T \rightarrow larger tracker volume
- Backgrounds from incoherent pair production (IPC) and synchrotron radiation (SR) to a lesser extent (tungsten masks significantly reduces SR toward IP)

High Luminosities

- High statistical precision: Requires control of systematics down to 10⁻⁶ 10⁻⁵ level.
- Online and Offline data handling O(10¹³) events
- Physics events up to 100 kHz imposes requirements on detector response time, FE electronics and DAQ.

Detector Requirements

Higgs Factor Program

- 1.2M ZH events at \sqrt{s} = 240 GeV
- 75k WW \rightarrow H events at \sqrt{s} = 365 GeV
- Higgs Couplings to fermions
- Higgs self-couplings (2-4 σ) via loop diagrams
- Unique possibility to measure electron selfcoupling in s-channel e+e- \rightarrow H at \sqrt{s} = 125 GeV.

- Momentum Resolution $\sigma_{pT}/p_T \simeq 10^{-3} at p_T \sim 50 \text{ GeV}.$
- Jet energy resolution of $30\%/\sqrt{E}$ in multi-jet environment for Z/W separation
 - Superior impact parameter resolution for *b*, *c* tagging

Precision EW and QCD Program

- 5 x 10¹² Z and 10⁸ WW events
 - m_z , Γ_z , Γ_{inv} , $\sin^2\theta_W$, m_W , Γ_W , ...
- 10⁶ tt events
 - $\mathsf{m}_{\mathsf{top}}, \Gamma_{\mathsf{top}}$, EW couplings
- Indirect sensitivity to new physics

- Absolute normalization of luminosity to 10⁻⁴.
- Relative normalization to 10^{-5} (eg Γ_{had}/Γ_{l})
- superior momentum resolution, limited by multiple scattering → minimize material.
- Track angular resolution < 0.1 mrad
- Stability of B-field to 10⁻⁶

Detector Requirements

Heavy Flavor Program

- 10¹² bb, cc; 1.7 x 10¹¹ ττ produced in a clean environment.
 - CKM matrix, CP measurements, flavor anomaly studies eg b→sττ, rare decays, CLFV searches, lepton universality, PNMS matrix unitarity.

- Superior impact parameter resolution
 - Precisely tag and identify secondary vertices and measure lifetimes.
- ECAL resolution at few $\%/\sqrt{E}$
- Excellent π^0/γ separation for tau identification
- Particle ID: K/ π separation over a wide momentum range \rightarrow precision timing.

Feebly coupled particles Beyond SM

- Opportunity to directly observe new feebly interacting particles with masses below m_z.
- Axion-like particles, dark photons, Heavy neutral leptons,
- Long lifetimes LLPs.

- Benchmark study: $Z \rightarrow vN$ with N decaying late
- Sensitivity to far detached vertices
 - Tracking: more layer, continuous tracking
 - Calorimeter: granularity, tracking capability
- Large decay length \rightarrow extended decay volume
- Precise timing
- Hermeticity

Detector Requirements

In summary, we require:

- Ultra-lightweight material
- Precision momentum ($\sigma(1/p_T) < 3 \times 10^{-5} \text{ GeV}^{-1}$) and angular res. (< 0.1 mrad)
- Excellent EM resolution with low constant term
- Unprecedented low jet energy resolution to distinguish W/Z/H to dijets.
- Micron-precision b- and c- tagging capability
- Particle ID in a broad momentum range, incl. pico-second timing capability

Several Strawman FCC-ee Detector Benchmarks (2 – 4 detectors planned)

Design (ILC/CLIC/Calice)

- All silicon tracker (pixels + strips)
- Si-W EM calorimeter
 - \circ 22X₀, 40 long. layers.
- Steel-Scintillator hadronic calo.
 - SiPM readout
- Solenoid outside calorimeter
- RPC based Muon system https://arxiv.org/pdf/1911.12230.pdf

- MAPS based vertex detector (1% X₀)
- High-precision low-mass drift chamber with surrounding Si microstrip (t_d < 400 ns).
- pre-shower with MPGD readout
- Lead-Fiber dual readout calorimeter
- Sensitive to both Sci/Cerenkov

 Hybrid with crystal EM?
- large μ-Rwell muon chambers
 <u>https://inspirehep.net/files/49ec726758</u>
 c422bc454e270a71f6e59f

- Includes a highly granular noble liquid calorimeter
- Possible design being explored are lead/steel absorbers (RM ~4 cm), stacked azimuthally inclined at 50° wrt radial axis with LAr as the active medium.
- Other considerations include Tungsten absorbers and/or Liquid Krypton.
- https://arxiv.org/pdf/2109.00391.pdf

Detector Concepts (ILC)

SiD : Compact all-silicon tracking systems with highly granular calorimeters optimized for PFA

ILD: Large detector with PFA calorimeters

- Large B field enables particle separation and consequently helps with Particle Flow Analysis together with a fine granularity calorimeter. ILC detectors well suited for PFA.
 - FCC detectors constrained in B field, therefore must rely more larger tracker volume and highly segmented calorimeters for PFA.
- Non-continuous beam structure allows for pulsed powering and therefore has the potential to reduce cooling requirements (less material!)

Tracking Requirements

Ref: ECFA Detector R&D roadmap https://indico.cern.ch/event/957057/

Detector	Characteristic	FCC-ee/ILC	EIC
Vertex	Position (µm)	< 3	< 3
	X/Xo (%/layer)	~ 0.05	~ 0.05
	Power mW/cm ²	~ 20	~ 20
	Rates (GHz/cm ²)	~ 0.05	~ 0.05
	Wafer size (")	12	12
	Timing precision $\sigma(ns)$	25	25
Tracker	Position (µm)	~ 6	~ 6
	X/Xo (%/layer)	~ 1	~ 1
	Power mW/cm ²	< 100	< 100
	Wafer size (")	12	12
	Timing precision $\sigma(ns)$	< 0.1	< 0.1
TOF	Timing precision $\sigma(ns)$	< 0.01	< 0.01

EIC/ALICE inner tracker development is a prototype for the FCC inner silicon tracker option!

Tracker Options

All Silicon tracker : proposed concept for CLID

- Monolithic CMOS 65 nm technology, an extension of the proposed concept for EIC : which itself replicates the current development for ALICE ITS3.
- 65 nm TJZ, 12" wafers, 20 mW/cm², 0.05% X₀/layer, 3μm hit precision

High-precision low-mass drift chamber (IDEA/ALLEGRO)

- Transparent! Reduced material \rightarrow minimal multiple interaction \rightarrow better momentum resl.
- Particle separation through dE/dx or dN/dx, Continuous tracking.

DPF-PHENO 2024

Synergy with ITS3/EIC

- Large stitched monolithic CMOS sensors (TPSCo 65 nm) developed for ITS3/EIC
- Thinned down to 50 μm, curved sensors to reach < 0.1% X0/layer!!</p>
- *Position resolution ~ $5\mu m$
- Cooling by airflow
- Radii : 18/24/30 mm, Length 27 cm
- Promising results (<u>M. Winter</u>)

Relative challenges for FCC

- Minimize X/Xo
- Optimize resolution vs X/Xo
- Stitched sensors yield
- Readout architecture design
- System integration

(see ALICE-3/FCC comparison by D. Contadro)

Vertex detector, possible integrated design

- Layout of a vertex detector for FCC has recently been engineered (<u>F. Palla</u>)
 - ✤ Integration inspired by ALICE ITS3 experience → but several challenges identified due to different FCC configuration. Material budget kept at 0.3% X/Xo per layer
 - Inner Layer: (ARCADIA), 110nm Lfoundry, 50 μm thick,, 50mW/cm².
 - Outer Layer and disks: (ATLASPIX3), TSI 180 nm, 50 μm thick, 100 mW/cm²
 - Service cones provide mechanism for air cooling and cable routing
 - Lightweight carbon fiber, honeycomb structures, Al reinforcements support structures
- Plan for lighter design using curved and stitched MAPS <a>S

Gaseous Tracking

Drift Chamber tracker proposed in for FCC detector benchmarks (IDEA/ALLEGRO)

- R = 0.35 m 2.00 m
- 90% He, 10% iC₄H₁₀
- 112 layers per 15° azimuth (~350k wires)
- Max drift time 350 ns
- 1.6% X_o at 90°

5/16/2024

- Large scale mechanical structures and full-size prototypes planned to demonstrate the feasibility of gaseous tracking
- Fast readout electronics to exploit cluster counting techniques
- TPC and other trackers considered, but need to mitigate distortions due to primary ion effects
 - 2 x 10¹² primary ions at any time in TPC (> x2500 ILC) 16

Particle ID

- Particle ID using time of flight, dE/dx, cluster counting is essential for flavor physics studies. (see FCC-ee analysis, CEPC analysis)
- dE/dx in drift chamber can provide >3 $\sigma \pi/K$ separation up to 50-100 GeV.
 - Non-differentiable for p~1 GeV. Mitigated with dedicated TOF systems surrounding tracking volume

LGAD based timing layer can provide high precision (~10 ps) timing resolution.

For a 2m path length (outer radius), $\sigma_t \sim 10$ ps can achieve a 3σ p/K separation for p < 5 GeV/c.

• Pressurized RICH detectors being investigated, can potentially offer $3\sigma \pi/K$ separation 5-80 GeV.

Calorimeter

- The three detector concepts for FCC-ee have been proposed largely around unique calorimeter designs:
- 1. ALLEGRO: LAr calorimeter
 - 2 mm Pb/Steel absorber oriented 50° wrt radial direction and multilayer readout electrode to offer high granularity readout.
 - Finer longitudinal (12 vs. 4 in ATLAS) segmentation and superior (~5x) SNR with cold electronics, 22 Xo, R_M ~ 4 cm (with LAr)
- 2. Dual Readout Fiber calorimeter:
 - Copper absorbers with embedded Scintillation and Cerenkov fibers
 - 75 towers to ~0.1 radian, no physical longitudinal segmentation.
 - Dual readout with EM crystal calorimeters offer superior performance
- 3. Si-W EM calorimeters and Tile-Scintillator hadronic calorimeter with SiPM readout.
 - CALICE style proposed for both CLD and ILC.

Reference: M. Aleksa et. al.

Nobel Liquid calorimeters

LAr calorimeters have been well demonstrated in a number of HEP experiments.

- Also a proposed design concept for FCC-ee:
- Pb/Steel absorbers with 7-layer readout electrode positioned 50° wrt radial direction.
- Possible turbine design option being explored for forward region

High granularity (x10 ATLAS) for better PFA

- Prototype with two absorbers and one electrode constructed.
- Plans to build additional prototypes and test in realistic conditions.

Cold digital electronics

 Evolving from what is being used for DUNE Vertical Drift Potential to offer superior x5 S/N performance

Turbine structure proposed for forward calorimeters

Dual Readout Fiber

Reference: Snowmass submission

- Promising results matching earlier simulation studies.
- Need large scale prototypes with TB verification to demonstrate capabilities.
 Possibility to use longitudinal segmentation using timing information

A front face EM crystal calorimeter with a DR will provide both a superior EM resolution ($\sim 3\%/\sqrt{E}$) and a hadronic energy resolution.

Energy (GeV)

Comparison in performance

https://link.springer.com/article/10.1140/epjp/s13360-021-02034-2

Detector Technology	EM Energy Resolution		Hadronic Ener		
	stochastic	constant	stochastic (single hadrons)	50 GeV jets	50 GeV jets (inc. PFA)
High granularity Si/W (EM) and Tile/Scintillator Had.	15-17%	1%	40-50%	~6%*	4%
High Granularity LAr (EM) and Tile Scintillator (Had)	8-10%	< 1%	40%	~6%*	3-4%*
Dual Readout (DR) Fiber	11%	< 1%	30%	4-5%	3-4%*
DR with EM crystal	3%	< 1%	26%	5-6%	3-4%

* = estimated, no data or simulation exists.

Muon Detectors

- Several options being considered to provide robust, largearea muon detectors with fast timing and high spatial resolution: Identify muons and search for LLPs
 - Significant experience from ongoing LHC experiments
- Large area precision drift tube chambers using eco-friendly gases capable of 3D tracking with precision position and timing information.
- - Early test beam results appear promising offering >90% efficiency and < 100 μm spatial
- RPC technology, proposed for CLD, can also be well suited offering fast signals (~ns) and good spatial resolution.
- These technologies must be further developed and demonstrated at large scales.

References: <u>NIM</u>, <u>EuroPhys</u>

DPF-PHENO 2024

Summary

Significant R&D efforts ongoing toward realizing a detector for future e+e- collider.

- From individual detector systems to integrated designs
- Several prototyping efforts already under way in a number of areas
- Many of the technological concepts being proposed already exist but needs to be demonstrated scaled-up.
- Inner tracker has significant synergies with ongoing efforts in ALICE/ITS3 and EIC.
- Large synergy between detector requirements for ILC and FCC.
- Newly organized Detector R&D (DRD) collaborations at CERN offer a vehicle for collaboration and efforts.
- Targeted detector R&D efforts in U.S. beginning to take shape.
- Resources to pursue such R&D efforts remain minimal, largely due to other ongoing efforts in HL-LHC upgrades.
- While challenges remain, there is good progress toward realizing the fundamental concepts that will lead to defining integrated detector concepts for future colliders.