



# Constraining Sensitivity to CP-Odd COLLIDER Contributions in the Higgstrahlung Process at FCC-ee

Nicholas Pinto (JHU), Andrei Gritsan (JHU), Jan Eysermans (MIT), Valdis Slokenbergs (JHU)

DPF-Pheno 2024

16 May 2024







### Outline:

- Overview
- Selection and efficiency
- MELA: What it is and how it's used
- Template details
- Results
- Summary and future avenues





### Overview of Current Study:

• Set constraints on  $f_{CP}^{HZZ}$  for simulated FCC Reco data.

- $e^+e^- \rightarrow ZH, H \rightarrow X$  (recoil),  $Z \rightarrow l^+l^-$
- $\sqrt{s} = 240 \ GeV$ , Luminosity = 7200  $fb^{-1}$
- Results also presented @ 250  $fb^{-1}$  to compare to <u>Snowmass 2022</u>

$$f_{CP}^{HVV} = \frac{|a_3^{HVV}|^2}{\sum |a_i^{HVV}|^2 (\sigma_i^{HVV} / \sigma_3^{HVV})} \,,$$

$$A(H \to V_1 V_2) = v^{-1} \left( a_1^{HVV} m_V^2 \epsilon_1^* \epsilon_2^* + a_2^{HVV} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{HVV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$





## Overview of Current Study:

- Detector simulation uses DELPHES fast sim.
- Template fit made from 2 discriminants + recoil mass.
- Broader range of backgrounds used than Snowmass:
  - Primarily WW, ZZ,  $Z/\gamma^*$
  - Rare backgrounds:
    - $e \gamma \longrightarrow e Z, Z \longrightarrow l^+ l^-$
    - $\gamma\gamma \longrightarrow l^+l^-$



#### Cut Flow:

#### μμ:

- Signal Selection Efficiency ~ 47.9% •
- Signal : Background ~2.5



#### *ее*:

- Signal Selection Efficiency  $\sim 40.0\%$
- Signal : Background ~2.0



#### Current Selection ( $\mu\mu$ ): N-1 Plots:









- "Matrix Element Likelihood Approach"
- Calculates transition probability from one hypothesis to another using event kinematics.
- Reco-Level probabilities can be used to calculate optimal observables.
- Gen-Level probabilities can be used to perform reweighting.



#### Reweighting:



- Probabilities calculated by MELA.
- Reweights  $0^+$  distribution to  $0^-$  and 50/50 mixture distributions.



### What is an optimal observable?

<u>Neyman-Pearson Lemma</u>: Likelihood ratio is optimal for separating two hypotheses.







## Template Fit Details:

- 3D histogram filled with  $D_{0^-}$ ,  $D_{CP}$ ,  $M_{Rec}$  each on one axis.
- 4 bins/axis
- Example projections for  $Z \rightarrow \mu\mu$  @ 7200  $fb^{-1}$ :





#### Fits with $H \rightarrow X, Z \rightarrow \mu\mu$ :



Nicholas Pinto – Johns Hopkins University – DPF Pheno. – 16 May. 2024



#### Fits with $H \rightarrow X, Z \rightarrow ee$ :



Nicholas Pinto – Johns Hopkins University – DPF Pheno.



#### Future studies:

- MELA can probe couplings besides  $f_{CP}^{HZZ}$ .
  - $f_{CP}^{HZ\gamma*}$ ,  $f_{CP}^{H\gamma*\gamma*}$  studies also possible within FCC framework.
- Also plan to target  $Z \rightarrow qq$ .





#### Summary:

- Likelihood fit from discriminants represents a realistic constraints on  $f_{CP}^{HZZ}$ .
  - 250  $fb^{-1}$  scans in agreement with <u>Snowmass 2022</u> study.
  - This study is updated with detector effects and a broader range of backgrounds.
- Plans to extend this study:
  - $Z \rightarrow qq$
  - Alternative couplings:  $f_{CP}^{HZ\gamma*}$ ,  $f_{CP}^{H\gamma*\gamma*}$



## Backup: Behavior of $\cos \theta_2$ Endpoints:

- $\cos \theta_2$  is the angle between muon and recoil direction.
- "Bullhorns" appear at the extrema of  $\cos \theta_2$  in  $e^+e^- \rightarrow \tau^+\tau^-$







Nicholas Pinto – Johns Hopkins University – Second Annual U.S. Future Circular Collider Workshop – 26 March. 2024



Nicholas Pinto – Johns Hopkins University – Second Annual U.S. Future Circular Collider Workshop – 26 March. 2024

#### 17

Backup:  $\cos \theta_2$  of  $Z/\gamma^* \rightarrow \mu\mu$  and  $\tau\tau$ :



Horns are nearly all from  $\tau\tau$  events. No events in the bins below 0.98. Missing energy from  $\tau$  decays into neutrinos.

Nicholas Pinto – Johns Hopkins University – Second Annual U.S. Future Circular Collider Workshop – 26 March. 2024