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Hard process:
in itial high-energy interaction

Evolution:
pa rton shower

perturbative

Hadronization: 

combine quarks and gluons
non -perturbative
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Big Picture
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A series of progressive steps needs to be done before 

practically useful in Pythia simulations 
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Train on truth level Pythia 
output (not obs. In exp)

Develop a framework to 
propagate errors

Train on mock data (i.e., just 
observable information)

Train on real data (i.e., 
just already measured 

information)

Replace/Complement 
Pythia string model

We are
h ere

Pa rtial 
results
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Hadronization Models
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String m odelPythia

Fig from Vitev, IV YR workshop, 2020
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MAGIC

MAGIC
(Microscopic Alterations Generated from IR Collections)
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Step 1
Train a Base (B) Model 

to reproduce Pythia

Step 2
Fine Tune (FT) the B 

Model on Observables

Only access to hadron
level information

Only access
to observables
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Further Directions

Base 
Model

B-Model 
hadron-

level output

{𝒑𝒛 , 𝒑𝑻}
ML-

Based

Sample

Step 1: Train Base (B) - Model on Pythia generated hadron-level output
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Reproduces 
Pythia
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MLHA D Pipeline
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We need a generative model!

Sample hadron kinematics:
Train on {𝒑𝒛, 𝒑𝑻}

Em ission of different Mesons:
Con dition on mass (𝒎) and energy (𝑬)
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Generative Models

Source: generative models
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⇒ Task: Learn the probability distribution p(x ) of the data

Which generative model should we choose?

youssead@ucmail.uc.edu

Do w e hav e access to

the exact probability 

distribution?

Is i t able to learn 

complex 

distributions?

https://openai.com/research/generative-models
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Z0- r andom vector 

sampled from a 

Gaussian 𝑝0 𝑧0

Fi  – invertible NN that 

tr ansforms 𝑝0 𝑧0 to 𝑝𝑖 𝑧𝑖
by  change of variables

Complex target distribution 

𝑝𝑘 𝑧𝑘 i s l earned 

⇒ Can learn complex distributions!

⇒Access to the exact probability distribution

𝑝𝑘 𝑧𝑘 = 𝑝0 𝑧0 ෑ

𝑖=1

𝐾

|det
𝜕𝑓𝑖(𝑧𝑖−1)

𝜕𝑧𝑖−1
ቚ
−1

Normalizing Flows

Exact probability distribution is
obtained by change of variables
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hHps://github.com/janosh/awe
some-normalizing-flows
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some-normalizing-flows
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Back to Physics

Im plement NF in the fragmentation chainto obtain physical observables

NF NF

⇒ MultiplicityobtainedbyMLHadagreeswithPythia!
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MAGIC

MAGIC
(Microscopic Alterations Generated from IR Collections)
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Step 1
Train a Base (B) Model 

to reproduce Pythia

Step 2
Fine Tune (FT) the B 

Model on Observables

Only access to hadron
level information

Only access
to observables

youssead@ucmail.uc.eduA. Youssef, Towards data-driven models of hadronization​

mailto:youssead@ucmail.uc.edu


Observables

Further Directions

Fine-tuned

Model
Observables

ML-
Based

Simulated

Experiment
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Earth Movers 

distance

Step 2: Fine-tune B-Model on physical observables

B-Model
hadron-level

output
{𝒑𝒛, 𝒑𝑻}

Rewei ghted
hadron-level

output
{𝒑𝒛, 𝒑𝑻}

Rew eight

𝝎𝒊 =
𝓟𝑭𝑻(𝒑𝒛

𝒉𝒊 ,𝒑𝑻
𝒉𝒊)

𝓟𝑩(𝒑𝒛
𝒉𝒊 ,𝒑

𝑻

𝒉𝒊)

Upda te

𝓟𝑭𝑻(𝒑𝒛, 𝒑𝑻)
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Results
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Base: Pythia default parameters
Target: Pythia perturbed; aLund=1.5
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Conclusion and Outlook

youssead@ucmail.uc.edu

More MLHAD work

• Reweighting Monte Carlo Predictions and Automated

Fragmentation Variations in Pyhia 8 (arXiv:2308.13459)

• Pythia Flavor Reweigthing(arXiv:24NN.NNNNN)

• Collective Reweighting Method - two
part reweighter (arXiv:2407.XXXXX)

• Tuning Hadronization Models
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MAGIC is a very promising methods for data-driven 
hadronization models!

youssead@ucmail.uc.edu

Excellent results by training on only one observable (multiplicity)!

More details on MAGIC and uncertainty quantification in arXiv: 2311.09296

Project Homepage:
https://uchep.gitlab.io/mlhad-

docs/

mailto:youssead@ucmail.uc.edu
https://arxiv.org/abs/2308.13459
mailto:youssead@ucmail.uc.edu
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Backup
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Uncertainty Quantification
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Uncertainty estimation is crucial for event generator 

predictions! 

26
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Statistical (and Training) Uncertainties

(Image source: The very Basics of Bayesian Neural Networks )

„Classical“ Neural Networks

Weights have a fixed value
→Weight values are updated in each epoch
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Statistical (and Training) Uncertainties

Bay esian Neural Networks (BNN)

(Image source: The very Basics of Bayesian Neural Networks )

„Classical“ Neural Networks

Weights have a fixed value
→Weight values are updated in each epoch

Weights are sampled from a distribution
→Distribution parameter are updated in 

ea ch epoch

→ BNN are easy to implement: Add additional loss function for weight distribution

→ Capture statistical and training uncertainties
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Bayesian NF Results

Py thia Sample:
On e sample with errors 

corresponding to 𝑁𝑏𝑖𝑛

Mean BNF:
5× 105 sa mples with 

er rors corresponding to 
th e standard deviation

BNF capture the statistical 
and training uncertainties
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Reweighting with NFs

b is a  free parameter in the Lund function used 
in  Py thia: StringZ:bLund

Train nominal NF conditioned on different b
→Get likelihood

→ Reweight nominal output using ratio of 
likelihoods:

𝑤 = ς
𝑖
𝑝𝑛𝑜𝑚
𝑖 (𝑧)

𝑝𝑝𝑒𝑟𝑡
𝑖 (𝑧)
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When is a hadronization model successful?
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When is a hadronization model successful?

T h e performance isju dged by their description of 

experimental measurements!
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A. Youssef, Towards data-driven models of hadronization​34

Pythia

Herwig

N. Fischer and T. Sj¨ostrand,
JHEP 01, 140 (2017), 1610.09818.

When is a hadronization model successful?

T h e performance isju dged by their description of 

experimental measurements!

Ph enomenological Models (St ring, Cluster) a re currently state of a rt 

and are ov erall v ery su ccessful, however:

com parison of data from proton-proton and ion-ion collision with Pythia

discrepancies at the level of O(20%) t o O(50%)

recov ering collective effects can be challenging, for instance, heavy baryon 

produ ction at h igh event multiplicities Alice Collaboration, arXiv: 1807.11321

no efficient estimation of Uncertainties

youssead@ucmail.uc.edu
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Hadronization Models

Two primary hadronization models are used

h 1   h 1

h 2   h 2

step 1

step 2

string

37

cluster

St ring model:

Iteratively split parton connected by QCD 

color strings with linear potential

Cluster model:

pr e-confine partons into proto-

clusters, then split by  two-body decays

A. Youssef, Towards data-driven models of hadronization​ youssead@ucmail.uc.edu

Pythia Herwig

MLhad: Ilten, Menzo,Youssef, Zupan, 2203.04983, 
https://gitlab.com/uchep/mlhad 

HadML: (Chan, Ghosh,) 
Ju, (Kania), Nachman, 

(Sangli,) Siodmok, 

2203.12660, 2305.17169
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Uncertainty Quantification
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Uncertainty estimation is crucial for event generator 

predictions! 

38
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Uncertainty Quantification
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Uncertainty estimation is crucial for event generator 

predictions! 

Efficient solutions exist!

perturbative calculations depend on choices of scale, 
values of gauge and other couplings, particle masses, 

and nonperturbative inputs
Giele et al, Phys. Rev. D84, 054003 (2011)

Hard matrix element

P a r t on  s h ow e r

S. Mrenna and P. Skands, Phys. Rev. D94(7), 074005 (2016)

39
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Reweighting Hadronized Pythia Events
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Sm all Detour:
No ML, on ly Had

youssead@ucmail.uc.edu
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Reweighting Hadronized Pythia Events
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Event generation is time consuming

We want to reweight events without 
regenerating

Use a modified veto algorithm

New event weights for different 
hadronization param are book kept

We calculate event weights for different 
hadronization options in a single 

event generation!

youssead@ucmail.uc.edu
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Reweighting Hadronized Pythia Events
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reweighted

exa ct calc.

𝒆+𝒆− → 𝒁 → 𝒋𝒆𝒕𝒔

youssead@ucmail.uc.edu
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Reweighting Hadronized Pythia Events
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Generate 100 samples 
with different variations 

of aLund

Each sample has 1000 
events

We have a speed up by a 
factor ~3

youssead@ucmail.uc.edu

Cost per additional 
parameter variation is 

around 0.05 ms

mailto:youssead@ucmail.uc.edu


Vanilla VAE

VAE latent space
arXiv: 1804.01947

Generative Models

V ariational Autoencoder (VAE)

KL-divergence limits the 

latent space to a simple 
analytic distribution
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Kingma et al, arXiv:1312.6114
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Kingma et al, arXiv:1312.6114

𝒑𝒛, 𝒑𝑻
Samples

Latent 
Distribution

𝒛 ~ 𝑝(𝑧)

Inference

https://arxiv.org/abs/1804.01947
mailto:youssead@ucmail.uc.edu
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Vanilla VAE

VAE latent space
arXiv: 1804.01947

Generative Models

V ariational Autoencoder (VAE)
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Complex input data Simple latent space

⇒ Complex distribution are hard to learn!

Kingma et al, arXiv:1312.6114

KL-divergence limits the 

latent space to a simple 
analytic distribution

youssead@ucmail.uc.edu
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VAE latent space
arXiv: 1804.01947

Generative Models

V ariational Autoencoder (VAE)
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Complex input data Simple latent space

⇒ Complex distribution are hard to learn!

Kingma et al, arXiv:1312.6114

KL-divergence limits the 

latent space to a simple 
analytic distribution

How can we make 
VAEs learn more 

complex distribution?

youssead@ucmail.uc.edu
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Generative Models

Use Sliced Wasserstein Distance as latent loss 
function!
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Generative Models

Use Sliced Wasserstein Distance as latent loss 
function!
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Wasserstein distance (WD)

mailto:youssead@ucmail.uc.edu


Generative Models

Use Sliced Wasserstein Distance as latent loss 
function!
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Wasserstein distance (WD)

Sliced Wasserstein distance

Projects high dimensional data into one 
dimensional “slices”

WD in 1D has a closed form solution

Sorted Difference of the two samples

mailto:youssead@ucmail.uc.edu


cSWAE architecture
(Architecture used in SciPost Phys. 14, 027 (2023) )

SWAE latent space
(arXiv: 1804.01947 )

Generative Models

Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE)

⇒ Can learn complex distributions!

SciPost Phys. 14, 027 (2023)

VAE

Restricted to

Pion emissions
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SW distance enables

learning any sampleable
latent distribution

https://scipost.org/SciPostPhys.14.3.027
https://scipost.org/SciPostPhys.14.3.027
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cSWAE architecture
(Architecture used in SciPost Phys. 14, 027 (2023) )

SWAE latent space
(arXiv: 1804.01947 )

Generative Models

Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE)

⇒ Can learn complex distributions!

𝒑𝒛, 𝒑𝑻
Samples

⇒ No access to the probability distribution

SciPost Phys. 14, 027 (2023)

VAE

Latent 
Distribution

Restricted to

Pion emissions
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𝒛 ~ 𝑝(𝑧)

SW distance enables

learning any sampleable
latent distribution

Decoder “just” generates samples

https://scipost.org/SciPostPhys.14.3.027
https://scipost.org/SciPostPhys.14.3.027
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Z0- r andom vector 

sampled from a 

Gaussian 𝑝0 𝑧0

Fi  – invertible NN that 

tr ansforms 𝑝0 𝑧0 to 𝑝𝑖 𝑧𝑖
by  change of variables

Complex target distribution 

𝑝𝑘 𝑧𝑘 i s l earned 

⇒ Can learn complex distributions!

⇒Access to the exact probability distribution

𝑝𝑘 𝑧𝑘 = 𝑝0 𝑧0 ෑ

𝑖=1

𝐾

|det
𝜕𝑓𝑖(𝑧𝑖−1)

𝜕𝑧𝑖−1
ቚ
−1

Normalizing Flows

Exact probability distribution is
obtained by change of variables

Removed pion

emission restriction
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hHps://github.com/janosh/awe
some-normalizing-flows
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Further Directions
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Propagation of errors

ML architecturewith Bayesian Normalizing Flows (presented in part)

T rain on observables only

Two part reweighter (not part of the talk)

Train on global observables with Fine tuning (results not 
shown in this talk)

T o train on experimental data

Want fast evaluation of parameter dependency

Use reweighting method

First implementation in Pythia for Lund string model (tobe released
soon in Pythia)

youssead@ucmail.uc.edu
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