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Resonant anomaly detection

- Assume we have a resonant variable m, and some other
discriminating features x.
Pista(c,m) =w*Po(x,m) + (1 —w) * Pg(x,m)

- Signal Region(SR) and Side-Bands(SB) are defined with
respect to the resonant variable m.
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Data-driven anomaly detection techniques

Density Estimation Classifier Based
Based approaches approaches

 CATHODE (arxiv:2109.00546v3)

*  ANODE arxiv:2001.04990v2)

CURTAINS (arXiv:2203.09470v3)

- R-ANODE (this talk!)

CWOLA (arXiv:1902.02634v2)

 Ideal AD (ldeal version of
CATHODE, CURTAINS and
CWOLA) (arxiv:2109.00546v3)

etc ...
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ANODE
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Anomaly Detection with Density Estimation (arXiv:2001.04990v2)
Anomaly Detection in the Presence of Irrelevant Features arXiv:2310.13057v1
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* A conditional density
estimator is trained to lea
P;(x|m € SB) in the side-
bands(SB).

* The learned Py (x|m) is
used to interpolate into the
SR
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ANODE

In SR, directly
learn
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Anomaly score: R(x|m) =




ANODE

In SR: Learn Py, (x|m)

Gaussian toy model ANODE must learn the
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ANODE

In SR: Learn P44, (x|m)

Classifying Anomalies THrough Outer Density Estimation (
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R-ANODE (new method)

In the SR,
- Hold the interpolated Pz (x, m) fixed
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R-ANODE

In the SR,
Hold the interpolated Py (x, m) fixed.

Directly model P¢(x, m) with a normalizing flow by fitting

to data: 106
Pdata (x; m) — 10%
w* Pg(x,m) + (1 —w) * Pp(x,m) .

(Normalizing (hold fixed) &

Flow)

Gaussian toy model
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R-ANODE

Pigiog(x,m) =|wpx Ps(x,m)+ (1 —w) * Pg(x,m)

(Normalizing (hold fixed)
Flow)

« Hold w fixed and scan over different w's as working
points
* Learnw

R-ANODE (ideal): w fixed to the true w-value




R-ANODE

Loss:

Minimize: — log(Py4:4(x, m))

* w.r.t parameters of Pg(x, m), holding w fixed
* w.rt parameters of Pg(x, m) and w




Dataset

- The LHC Olympics R&D dataset :

Data: 1M QCD di-jet events as background and
different amounts of signal events.

100 GeV

500 GeV
q

The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics
. arXiv:2101.08320
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Dataset

. The SR : 3.3TeV <m;; < 3.7 TeV

- The resonant variable is m;;, and the features x are

J1 _Jj2
[m]1; My —Myq1,751,Tyq

Initial signal injection:
Nsig = 1000(~770 in SR), S/B~ 6 x1073, S/v/B~ 2.2

The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics
. arXiv:2101.08320
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Model architecture and hyperparameters

- The background model is the same as CATHODE/ANODE

(arXiv:2001.04990v2, arXiv:2109.00546v3): Masked
Autoregressive Flow (MAF) with affine transformations.

- For the sighal model for Pg(x,m), we use RQS
transformations with MADE blocks.

- For proof of concept, we use the true background
density P (m) estimated from histograms of the
background in SR.

- We also update the ANODE model to P;,:,(x|m), to the
same RQS-based model, to compare R-ANODE vs ANODE


https://arxiv.org/abs/2001.04990v2
https://arxiv.org/abs/2109.00546v3

SIC

SIC Curves SIC = TPR/NFPR
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R-ANODE improves ANODE and also gives better SIC Curves than
the idealized-AD

Back To The Roots: Tree-Based Algorithms for Weakly Supervised Anomaly Detection arXiv:2309.13111
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Classifier based approaches
In SR:

Ideal-Anomaly Detector (IAD)

Perfectly
Simulated
background

Data (mixture

of signal and

Classifying Anomalies THrough Outer Density Estimation (CATHODE)
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Full Phase Space Resonant Anomaly Detection arXiv:2310.06897v2
cpe . The Interplay of Machine Learning--based Resonant Anomaly Detection
Classification Methods arXiv:2307.111571
Back To The Roots: Tree-Based Algorithms for Weakly Supervised Anomaly
Detection arXiv:2309.13111v1
Combining Resonant and Tail-based Anomaly Detection arxiv:2309.12918

Ideal AD iS an ideal VerSion Of Extending the Bump Hunt with Machine Learning arXiv:1902.02634
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Classifier based approaches
In SR:

Ildeal-Anomaly Detector (IAD)

Perfectly It’s possible to exceed the IAD
Simulated performance, if not using a classifier-
background based approach.

Supervised is the true upper limit for
performance

Data (mixture

of signal and

Classifying Anomalies THrough Outer Density Estimation (CATHODE)
baCkg rou nd ) arXiv:2109.00546v3

Full Phase Space Resonant Anomaly Detection arXiv:2310.06897v2
cpe . The Interplay of Machine Learning--based Resonant Anomaly Detection
Classification Methods arXiv:2307.111571
Back To The Roots: Tree-Based Algorithms for Weakly Supervised Anomaly
Detection arXiv:2309.13111v1

. . . Combining Resonant and Tail-based Anomaly Detection arxiv:2309.12918
Ideal AD 1S an ]deal version Of Extending the Bump Hunt with Machine Learning arXiv:1902.02634
C ATHODE Anomaly Detection in the Presence of Irrelevant Features

arXiv:2310.13057v1
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Nsig vs SIC @ FPR=0.001

Nominal significance
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Nsig vs Significance

Significance = SIC *

Nominal significance
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Samples from P¢(x, m)
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 Directly learning the signal distributions Pg(x, m) leads to a
more interpretable method.

- This could give us information about the signal: eg: mass of
subjet, Pronginess of subjet. :




Samples from P¢(x, m)
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 Directly learning the signal distributions Pg(x, m) leads to a
more interpretable method.

- This could give us information about the signal: eg: mass of
subjet, Pronginess of subjet. :




Learned w
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Learned w is very close to the true w values




Scanning over w
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Conclusions

R-ANODE improves ANODE and exceeds the performance of
CATHODE and IAD.

R-ANODE can learn w- values very close to the true w.

Performance of R-ANODE is robust to the incorrect choice of
w.

R-ANODE directly learns the signal distribution, which allows
us to draw samples directly from the signal distribution.

Future directions
- Study how irrelevant features affect the performance
- Apply this method with bump-hunt

- Study the effects of sculpting
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Samples for different w
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Samples for different w
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Ensembling

For each signal injection, we resample the the signal 10
times. For each resample, we shuffle and split the data 20
times into training-validation splits (80-20) and train the
model.

For each resample, ensembling is done with 10 lowest
validation loss models from each training, and 20 re-
trainings (200 models).

Similarly, the IAD-BDT we train HistGradientBoosting
classifer, with default hyperparameters for 200 epochs,
but shuffle-and split the data and retrained it 50 times
(50-50), for ensembling.




Model architecture and hyperparameters

- For the signal model for Pg(x, m) we use RQS
transformations with 6 MADE blocks, with block
consisting of 2 hidden layers with 64 nodes each,
dropout=0.2, and batch-normalization is applied in
between layers.

- The RQS-model for all cases is trained with a learning
rate = 0.0003, with the AdamW optimizer, with a batch
size of 256, for 300 epochs.




