Resonant Multi-Scalar Production in the Generic Complex Singlet Model in the Multi-TeV Region

Ian Lewis (University of Kansas) S.D. Lane, M. Sullivan arXiv:2403.18003 [hep-ph]

Phenomenology Symposium May 13, 2024

The Higgs Potential

- All precision measurements look Standard Model like so far.
- It appears like the observed scalar is related to the mass generating mechanism for the SM fermions and gauge bosons.
- We still have not determined precisely how the Higgs obtains a vacuum expectation value.
- The vev comes from the shape of the scalar potential:

$$
V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4 \supset \frac{1}{2} m_h^2 h^2 + \frac{\lambda_{hhh}}{3!} h^3 + \frac{\lambda_{hhh}}{4!} h^4
$$

• In the long run, need to measure Higgs trilinear (and maybe quartic?) couplings to get a handle on the mechanism that generates the vev.

Phenomenology Symposium May 13, 2024

Scalar Extensions

- Scalar Extensions:
	- Adding new scalars will alter the Higgs potential.
	- The Higgs is unique in the Standard Model in that you cannot forbid the Higgs portal:

 $|\Phi|^2 |S|^2$

- Scalar extensions are simple extensions of the SM that can provide a lot of interesting phenomenology.
- They can also help solve many particle physics problems.
- With new scalar, have more scalar trilinear and quartic couplings.
- New production modes of di-scalar final states.

Additional trilinears

• Simplest extension: Real gauge singlet scalar

$$
V(\Phi, S) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4 + \frac{1}{2} a_1 |\Phi|^2 S + \frac{1}{2} a_2 |\Phi|^2 S^2
$$

+ $b_1 S + \frac{1}{2} b_2 S^2 + \frac{1}{3} b_3 S^3 + \frac{1}{4} b_4 S^4$

• After EW symmetry breaking and mixing, these couplings will give rise to additional trilinear couplings between mass eigenstates:

- Need to search for more scalar production than just di-Higgs to map out the full potential.
- Can get interesting new resonant decays: $h_2 \rightarrow h_1 h_1$ See talk tomorrow by Miguel Soto Alcaraz, or

Robens, arXiv:2209.15544; etc. etc.

Phenomenology Symposium May 13, 2024

Complex Singlet Scalar Extension

- Introduce a complex singlet scalar with no additional symmetries: $S_c = (S_0 + iA)/\sqrt{2}$
	- At the renormalizable level, can only couple to Higgs doublet through scalar potential:

$$
V(\Phi, S_c) = -\frac{\mu^2}{2} \Phi^{\dagger} \Phi + \frac{\lambda}{4} (\Phi^{\dagger} \Phi)^4 + \frac{b_2}{2} |S_c|^2 + \frac{d_2}{4} |S_c|^4 + \frac{\delta_2}{2} \Phi^{\dagger} \Phi |S_c|^2
$$

+ $\left(a_1 S_c + \frac{b_1}{4} S_c^2 + \frac{e_1}{6} S_c^3 + \frac{e_2}{6} S_c |S_c|^2 + \frac{\delta_1}{4} \Phi^{\dagger} \Phi S_c + \frac{\delta_3}{4} \Phi^{\dagger} \Phi S_c^2 \right.$
+ $\frac{d_1}{8} S_c^4 + \frac{d_3}{8} S_c^2 |S_c|^2 + \text{h.c.}$

- Equivalent to adding two new real scalars.
- After EWSB, have three massive scalars that mix (in the small :

$$
\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 & 0 \\ \sin \theta_1 & \cos \theta_1 & \sin \theta_2 \\ \sin \theta_1 \sin \theta_2 & \cos \theta_1 \sin \theta_2 & -1 \end{pmatrix} \begin{pmatrix} h \\ S_0 \\ A \end{pmatrix} + \mathcal{O}(\sin^2 \theta_2)
$$

– All coupling to fermions and gauge bosons inherited from SM Higgs boson-h.

Phenomenology Symposium May 13, 2024

Complex Singlet Scalar Extension

• After EWSB, have three massive scalars that mix:

$$
\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 & 0 \\ \sin \theta_1 & \cos \theta_1 & \sin \theta_2 \\ \sin \theta_1 \sin \theta_2 & \cos \theta_1 \sin \theta_2 & -1 \end{pmatrix} \begin{pmatrix} h \\ S_0 \\ A \end{pmatrix} + \mathcal{O}(\sin^2 \theta_2)
$$

– All coupling to fermions and gauge bosons inherited from SM Higgs boson-h.

- h_3 has doubly suppressed coupling.
- \bullet Dominant production of h_3 may be through decays of another scalar:

• Can discover two new scalars at once!

Phenomenology Symposium May 13, 2024

Complex Singlet Scalar Extension

- We will consider the mass ordering of $h_2 \rightarrow h_1 h_1$, $h_2 \rightarrow h_1 h_3$, $h_2 \rightarrow h_3 h_3$
- The goal is to find maximum rates for $m_2 > m_3 > m_1 = 125 \text{ GeV}$
- Will consider three scenarios for m_3 to have different collider phenomenology
	- $m_3 = 130 \text{ GeV}$
		- Decays like SM Higgs boson at this mass: $h_2 \rightarrow h_1 h_3 / h_3 h_3 \rightarrow 2b 2\overline{b}$.
	- $m_3 = 200 \, \text{GeV}$
		- Decays like SM Higgs boson at the mass, i.e. into Ws: $h_2\to h_1h_3\to b\bar b W^\pm W^\mp\quad$ and $h_2\to h_3h_3\to 2W^\pm\,2W^\mp$.
	- $m_3 = 270 \text{ GeV}$
		- Di-Higgs modes open with possible multi-Higgs signals: $h_2 \to h_1 h_3 \to 3 h_1$ and $h_2 \to h_3 h_3 \to 4 h_1$.
- Will consider four scenarios for limits:
	- Current limits on mixing angle.
	- Limits from HL-LHC
	- Limits from HL-LHC+FCCee
	- Limits from HL-LHC+ILC500

Theory Constraints

- Will use perturbative unitarity constraints on possible $2 \rightarrow 2$ scalar scattering.
	- Ensures that quartic couplings are perturbative.
- Correct global minimum.
	- Singlet scalar cannot couple to SM fermions or gauge bosons at tree level.
	- Cannot contribute to gauge boson mass.
	- Make sure the global minimum can create the correct masses:
- Potential is bounded from below.
- Require a narrow width approximation:
	- $-\Gamma_{\text{Tot}}(h_2) \leq 0.1 m_2$
	- Helps ensure calculations are reliable.
	- Experimental searches are often in narrow width regime.

Current Constraints on Mixing Angle

95% CL

95% CL

- Universal suppression of couplings to h_1 by $\cos\theta_1$
	- Easy interpretation of precision Higgs measurements.
- \bullet Coupling of h_2 to SM fermions and gauge bosons like a SM-Higgs suppressed by $\sin\theta_1$
	- $-$ Include WW, ZZ, h_1h_1 resonance searches.
	- Different assumptions for

Phenomenology Symposium May 13, 2024

Current Maximum Rates

Lane, **IML**, Sullivan arXiv:2403.18003

- Use the most constraining limits on mixing angles.
- For $h_2 \rightarrow h_1 h_1$, Goldstone boson equivalence theorem $prevents \Gamma(h_2 \rightarrow h_1 h_1)$ from deviating too much from $\Gamma(h_2 \rightarrow ZZ/W^+W^-)$
- $h_2 \rightarrow h_1 h_3$ has constraints from global minimum, perturbative unitarity, boundedness, and narrow width approximation:
	- Can find an upper bound on the triple coupling and mixing angle:

$$
|\lambda_{123}| \lesssim 4\sqrt{\frac{\pi}{3}}\left(m_1+2\,m_2|\sin\theta_1|\right) \qquad |\sin\theta_1| \lesssim 2\sqrt{\frac{\pi}{5}}\frac{v_{\rm EW}}{m_2}
$$

– Leads to an upper bound on the branching ratio:

$$
BR(h_2 \to h_1 h_3) \lesssim \frac{32 \pi}{3} \left(1 + \frac{1}{4} \sqrt{\frac{5}{\pi}} \right)^2 \frac{v_{\text{EW}}^2}{m_2^2} \approx 0.11 \left(\frac{m_2}{5 \text{ TeV}} \right)^{-2}.
$$

 $-$ Goes to zero as h_2 mass increases.

Phenomenology Symposium May 13, 2024

10^o Hard Cut: Direct Searches Limits —
$$
h_i h_j = h_1 h_1
$$

\n
$$
\frac{2}{3}
$$

\n10³
\n
$$
\frac{1}{300}
$$

\n
$$
\frac{4}{300}
$$

\n
$$
\frac{4}{300}
$$

\n
$$
\frac{4}{300}
$$

\n
$$
\frac{4}{300}
$$

\n
$$
\frac{1}{300}
$$

Mixing angles at Future Colliders

May 13, 2024

Maximum Rates with HL-LHC

• To maximize rates and be agnostic about what type of future collider is built in the long run, we maximize the ratio of rates:

$$
\frac{\sigma(pp \to h_2 \to h_i h_j)}{\sigma_{SM}(pp \to h_2)} \approx \frac{\sigma(pp \to h_2)}{\sigma_{SM}(pp \to h_2)} BR(h_2 \to h_i h_j)
$$

= sin² $\theta_1 BR(h_2 \to h_i h_j)$
ehaviors already covered:
Goldstone boson equivalence theorem: $BR(h_2 \to h_1 h_3) \to 0$ due to a combination of theory
constraints
other interesting behaviors:
 $BR(h_2 \to h_3 h_3) \approx 1/2$ in the multi-TeV regime
The max rates of $h_2 \to h_1 h_1$ and $h_2 \to h_3 h_3$ approach
same value

- Behaviors already covered:
	- $-$ Goldstone boson equivalence theorem: $BR(h_{2}\!\!\rightarrow\!h_{1}h_{1})\!\rightarrow\!1/4$
	- $-BR(h_2 \rightarrow h_1 h_3) \rightarrow 0$ due to a combination of theory constraints
- Other interesting behaviors:
	- − $BR(h_2 \rightarrow h_3 h_3)$ ≈1/2 in the multi-TeV regime
	- The max rates of $h_2 \rightarrow h_1 h_1$ and $h_2 \rightarrow h_3 h_3$ approach the

Lane, **IML**, Sullivan arXiv:2403.18003

Phenomenology Symposium May 13, 2024

Maximum Rates with HL-LHC

- Understanding $h_2 \rightarrow h_3 h_3$:
	- − To maximize rate, set $BR(h_2 \rightarrow h_1 h_3) = 0$
	- Set the partial widths

$$
\Gamma(h_2\rightarrow W^+W^-)\approx 2\,\Gamma(h_2\rightarrow ZZ)\approx 2\,\Gamma(h_2\rightarrow h_1h_1)
$$

– Derive equation for max rate:

$$
\sin^2 \theta_1 \text{BR}(h_2 \to h_3 h_3) = \sin^2 \theta_1 \left(1 - \text{BR}(h_2 \to W^{\pm} W^{\mp}) - \text{BR}(h_2 \to ZZ) - \text{BR}(h_2 \to h_1 h_1) \right)
$$

$$
\approx \sin^2 \theta_1 \left(1 - \frac{4}{3} \sin^2 \theta_1 \frac{\Gamma_{\text{SM}}(h_2)}{\Gamma_{\text{Tot}}(h_2)} \right),
$$

– Max rate is found with narrow width approximation is saturated $(x=0.1$ in our case):

$$
\kappa m_2 \geq \Gamma_{\text{Tot}}(h_2),
$$

– Can maximize and find corresponding sin theta and Branching ratios: Ω

$$
\sin^2 \theta_{1,\max} = \frac{3}{8} \frac{\kappa m_2}{\Gamma_{\text{SM}}(h_2)},
$$

$$
BR_{\text{max}}(h_2 \to h_3 h_3) = \frac{1}{2},
$$

$$
\sin^2 \theta_{1,\max} BR_{\text{max}}(h_2 \to h_3 h_3) = \frac{3}{16} \frac{\kappa m_2}{\Gamma_{\text{SM}}(h_2)},
$$

Phenomenology Symposium May 13, 2024 Lane, **IML**, Sullivan arXiv:2403.18003

13

Maximum Rates with HL-LHC

- Understanding $h_2 \rightarrow h_1 h_1$:
	- To maximize rate, set $\Gamma(h_2 \to h_1 h_3) = \Gamma(h_2 \to h_3 h_3) = 0$
	- Goldstone boson equivalence theorem sets:

$$
\sin^2 \theta_{1,\max} BR_{\max}(h_2 \to h_1 h_1) \approx \frac{1}{4} \sin^2 \theta_{1,\max}.
$$

- Maximum rate when mixing angle maximized.
- Total width grows like cubic power of mass, the narrow width assumption place upper bound on mixing angle:

$$
\kappa m_2 \gtrsim \Gamma_{\text{Tot}}(h_2) \approx \frac{4}{3} \sin^2 \theta_1 \Gamma_{\text{Tot,SM}}(h_2)
$$

– Max rate and corresponding mixing angle is then.

$$
\sin^2 \theta_{1,\text{max}} = \frac{3}{4} \frac{\kappa m_2}{\Gamma_{\text{SM}}(h_2)}
$$

$$
\sin^2 \theta_{1,\text{max}} BR_{\text{max}}(h_2 \to h_1 h_1) = \frac{3}{16} \frac{\kappa m_2}{\Gamma_{\text{SM}}(h_2)}
$$

– Even though branching ratios and mixing angles are different, the rates for $h_1 h_1$ and $h_3 h_3$ are the same when these bounds are saturated.

Lane, **IML**, Sullivan arXiv:2403.18003

Phenomenology Symposium May 13, 2024

Multi-Higgs phenomenology

- \bullet For m_3 =270 GeV , can have three and four Higgs final states:
- Showing $BR(h_{3} \rightarrow h_{1}h_{1})$ for the previous benchmark points.
	- - When available, this branching ratio dominates h_3 decays.
- Below 1 TeV, maximum two, three, and four Higgs rates are similar.
- This model has the surprising conclusion that in the multi-TeV range, the four Higgs signal may be a more promising search channel than the three Higgs.
- Very similar results for all collider scenarios.

Phenomenology Symposium May 13, 2024

Conclusions

• We studied resonant di-scalar production in the generic complex singlet scalar model.

 h_2 → $h_1 h_1$, h_2 → $h_1 h_3$, h_2 → $h_3 h_3$

- Two new scalars in addition to the SM-Higgs.
- Could discover two new scalars at once.
- Considered four possible collider scenarios:
	- Current constraints from LHC
	- HL-LHC
	- HL-LHC+FCCee
	- $-$ HI-I HC+II C500
- Considered three possible scenarios for h3 masses:
	- m_3 =130*GeV* : predominantly multi-b signals.
	- m_3 =200*GeV* $:$ h_3 predominantly decays into Ws:
	- $-$ *m*₃=270*GeV* : *h*₃→*h*₁*h*₁ opens up:
- Below 1 TeV, the maximum two, three, and four Higgs rates are similar.
- In the multi-TeV regime, this model has the surprising result that four Higgs final states could be produced at much higher rates than three Higgs.
- Many other studies on asymmetric decays in other models:

Dawson, Sullivan, PRD97 (2018) 015022; Adhikari, Lane, **IML**, Sullivan, arXiv:2203.07455; Abouabid et al arXiv:2112.12515; Basler, Dawson, Englert, Mühlleitner, PRD101 (2020) 015019; Robens, arXiv:2209.10996; etc.

Phenomenology Symposium May 13, 2024

Thank You

Phenomenology Symposium May 13, 2024

Where We're At CMS, Nature, arXiv:2207.00043

ATLAS, Nature, arXiv:2207.00092

- SM scalar potential contains two parameters, completely determined by the mass and vev.
- Search for Higgs pair production to directly measure shape of potential:

ATL-PHYS-PUB-2022-005 Snowmass Higgs Topical Group Report, arXiv:2209.07510

Phenomenology Symposium May 13, 2024

Current Maximum Rates

Lane, **IML**, Sullivan arXiv:2403.18003

- Use the most constraining limits on mixing angles.
- For $h_2 \rightarrow h_1 h_1$, Goldstone boson equivalence theorem $prevents \Gamma(h_2 \rightarrow h_1 h_1)$ from deviating too much from $\Gamma(h_2 \rightarrow ZZ/W^+W^-)$
- $h_2 \rightarrow h_1 h_3$ has constraints from global minimum, perturbative unitarity, boundedness, and narrow width approximation:
	- Can find an upper bound on the triple coupling and mixing angle:

$$
|\lambda_{123}| \lesssim 4\sqrt{\frac{\pi}{3}} (m_1 + 2 m_2 |\sin \theta_1|) \qquad |\sin \theta_1| \lesssim 2\sqrt{\frac{\pi}{5}} \frac{v_{\text{EW}}}{m_2}
$$

– Leads to an upper bound on the branching ratio:

$$
BR(h_2 \to h_1 h_3) \lesssim \frac{32 \pi}{3} \left(1 + \frac{1}{4} \sqrt{\frac{5}{\pi}} \right)^2 \frac{v_{\text{EW}}^2}{m_2^2} \approx 0.11 \left(\frac{m_2}{5 \text{ TeV}} \right)^{-2}.
$$

 $-$ Goes to zero as h_2 mass increases.

Phenomenology Symposium May 13, 2024

10⁰
\n
$$
\chi_{Tot}^2
$$
: Direct Search + Higgs Fits Limits
\n $- h_i h_j = h_1 h_1$
\n $- h_i h_j = h_1 h_3$
\n $- h_i h_j = h_3 h_3$
\n $\sqrt{S} = 14$ TeV
\n10⁻³
\n10⁻³
\n300 400 500 600 700 800 900 1000
\n m_2 (GeV)
\n1.0
\n χ_{Tot}^2 : Direct Search + Higgs Fits Limits
\n $\frac{1}{2}$
\n $\frac{2}{5}$ 0.6
\n0.8
\n0.8
\n0.9
\n $\sqrt{\frac{\chi_{Tot}^2}{10}}$: Direct Search + Higgs Fits Limits
\n0.0
\n $\frac{\chi_{Tot}^2}{10}$: Direct Search + Higgs Fits Limits
\n0.2
\n $h_i h_j = h_1 h_1$
\n $h_i h_j = h_1 h_3$
\n300 400 500 600 700 800 900 1000
\n m_2 (GeV)

