El	levator Pitch	Motivation	Model	Phenomenology	Results	Conclusion	References	Backup slides
O	o	00	00	00000000	00000000	00	00	0000000000

Majorons Echoes of Leptogenesis DPF- PHENO 2024

Swapnil Dutta with Brian Batell, Arnab Dasgupta, Akshay Ghalsasi To appear University of Pittsburgh, PITT PACC

May 16th, 2024

Swapnil Dutta

Majorons Echoes of Leptogenesis

2 Motivation

3 Model

4 Phenomenology

6 Results

Swapnil Dutta

Majorons Echoes of Leptogenesis

- 2 Motivation
- 3 Model
- 4 Phenomenology
- **5** Results
- 6 Conclusion
- 7 References

Majorons Echoes of Leptogenesis

Elevator Pitch	Motivation	Model	Phenomenology	Results	Conclusion	References	Backup slides
⊙●	00	00	00000000	00000000		00	0000000000

- If Baryon asymmetry generated from Leptogenesis, Lepton number violation required
- Assuming Lepton number violation generated by SSB of $U(1)_L$ global \implies Irreducible Majoron Production
- If Majorons long lived, decay signatures observable today

2 Motivation

3 Model

4 Phenomenology

5 Results

6 Conclusion

7 References

Swapnil Dutta

Majorons Echoes of Leptogenesis

Killing three birds with one stone?

Swapnil Dutta

Majorons Echoes of Leptogenesis

イロト イ団ト イヨト イヨト

2 Motivation

4 Phenomenology

- 6 Conclusion
- 7 References

Majorons Echoes of Leptogenesis

Elevator Pitch	Motivation	Model	Phenomenology	Results	Conclusion	References	Backup slides
00	00	⊙●	00000000	00000000	00	00	0000000000

Welcome to the singlet Majoron Model!

- $\mathcal{L}_{int} \supset \lambda \Phi NN + y_D LHN + h.c. + V(\Phi)$
- Scalar Φ (carries Lepton number), 3 SM singlet Majorana Neutrinos $N_{1,2,3}$

•
$$V(\Phi) = \kappa (\Phi^2 - f^2)^2$$

- Has $U(1)_L$ global symmetry
- $U(1)_L$ spontaneously broken
- Φ gets a VEV

Cosmological Irreducible Majoron Production \rightarrow Signatures of Leptogenesis $\ref{eq:second}$

Swapnil Dutta

2 Motivation

3 Model

4 Phenomenology

- 6 Conclusion
- 7 References

Majorons Echoes of Leptogenesis

- Lepton asymmetry generated through N₁ decay out of equilibrium, converted to Baryon asymmetry through sphalerons [M. Fukugita, T. Yanagida, 1986]
- Decay quantified by parameter $K \equiv \frac{\Gamma_D}{H(T=m_{N_1})}$ [Buchmüller et al. 2005]

イロト イロト イヨト イヨト

Elevator Pitch	Motivation	Model	Phenomenology	Results	Conclusion	References	Backup slides
00	00	00	0●●00000	00000000	00	00	0000000000
Leptogene	esis II						

• CP violation

• Baryon asymmetry $\eta_B \equiv \frac{n_B}{n_\gamma} = \frac{3}{4} \frac{a_{sph}}{f} \varepsilon_1 \kappa_f \simeq 0.96 \times 10^{-2} \varepsilon_1 \kappa_f$

• ε_1, κ_f - Quantitative dependence on $K \equiv \frac{\Gamma_D}{H(T=m_{N_1})}$

University of Pittsburgh, PITT PACC

Majorons Echoes of Leptogenesis

Swapnil Dutta

- Two dominant channels of Majoron production
 - $NN \rightarrow aa$
 - $NL \rightarrow Ha$

NN
ightarrow aa

University of Pittsburgh, PITT PACC

Swapnil Dutta

Majorons Echoes of Leptogenesis

 $\textit{NL} \rightarrow \textit{Ha}$

< 17 ▶

• N in thermal bath \rightarrow Freezes in irreducible Majoron density

Swapnil Dutta

Majorons Echoes of Leptogenesis

13 / 38

Irreducible Majoron production I

Model

•
$$m_{\nu} = \frac{m_D^2}{m_N}$$

• $m_D = iU\sqrt{d_l}R^T\sqrt{d_h}$ [J. Casas, A. Ibarra, 2001]

Phenomenology

00000000

- U- PMNS matrix, d_l =diag $(m_{\nu_1}, m_{\nu_2}, m_{\nu_3})$, d_h =diag $(m_{N_1}, m_{N_2}, m_{N_3})$, R- orthogonal matrix
- Majoron relic density at late times Y_a
 - Depends on mass of lightest active neutrino m_{ν} , Neutrino mass hierarchy, K, R matrix from Cassas-Ibarra Parameterization[1], m_{N_1} ($m_{N_2} = m_{N_3} = 100 m_{N_1}$)

Results

References

Backup slides

• Majoron yield minimized for Normal Hierarchy, $m_{\nu} = 0$,

$$R = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0\\ -\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(1)

Thus, these parameters fixed from now on

Swapnil Dutta

Irreducible Majoron production II

• Irreducible minimal Majoron relic density at late times

Phenomenology

$$Y_{a} = 10^{-11} \left(\frac{10}{z_{eq}(K)}\right) \left(\frac{10^{11}}{M_{N_{1}}}\right) \times$$

$$\tag{2}$$

$$\left(\frac{\lambda_1}{10^{-2}}\right)^2 \left(1 + 33.3 \left(\frac{\lambda_1}{10^{-2}}\right)^2 \left(\frac{10^{11}}{M_{N_1}}\right)\right) \tag{3}$$

•
$$\lambda_1 = \frac{m_{N_1}}{\sqrt{2}f}$$
 , f - $U(1)_L$ SSB scale

Swapnil Dutta

Majorons Echoes of Leptogenesis

Decay channels at tree level $a \rightarrow \nu \nu$ $\Gamma(a \rightarrow \nu \nu) \simeq \frac{m_a}{16\pi f^2} \sum_{i=1}^3 m_{\nu i}^2$ [C. Garcia-Cely, J. Heeck, 2017]

Decay channel at two loops $a \rightarrow \gamma \gamma$

Figure 1: [C. Garcia-Cely, J. Heeck, 2017],[J. Heeck, H. Patel, 2019] Swapnil Dutta Decay channels at one loop $a \rightarrow \bar{f}f$

Figure 2: [C. Garcia-Cely, J. Heeck, 2017] (♂) (≧) (≧) (≧) (≧)

University of Pittsburgh, PITT PACC

Majorons Echoes of Leptogenesis

- 2 Motivation
- 3 Model
- **4** Phenomenology

- 6 Conclusion
- 7 References

Swapnil Dutta

Majorons Echoes of Leptogenesis

Figure 3: $f_a = \frac{\rho_a}{\rho_{\text{DM}}}$, $\lambda_1 = \frac{m_{N_1}}{\sqrt{2}f}$, $f - U(1)_L$ SSB scale

Swapnil Dutta

Majorons Echoes of Leptogenesis

18 / 38

Figure 4: [K. Zurek et al., 2013]

Swapnil Dutta

Majorons Echoes of Leptogenesis

Figure 5: [P.D. la Torre Luque, S. Balaji, J. Silk, 2024]

Swapnil Dutta

Majorons Echoes of Leptogenesis

Figure 6: [P.D. la Torre Luque, S. Balaji, J. Silk, 2024]

Swapnil Dutta

Majorons Echoes of Leptogenesis

Figure 7: [T.R. Slatyer, C.-L. Wu, 2017]

Swapnil Dutta

Majorons Echoes of Leptogenesis

Figure 8: From CMB anisotropy induced by DM decay

Swapnil Dutta

Majorons Echoes of Leptogenesis

23 / 38

Elevator Pitch	Motivation	Model	Phenomenology	Results	Conclusion	References	Backup slides
00	00	00	0000000	0000000●	00	00	0000000000

- Plots are preliminary and we are working on decays into more channels which make the parameter space more constrained.
- Also, the above plots are being refined.

- 2 Motivation
- 3 Model
- 4 Phenomenology

Swapnil Dutta

Majorons Echoes of Leptogenesis

- Leptogenesis signatures obtained from irreducible Majoron density
- Signatures observable in current experiments
- Certain parts of parameter space ruled out from current experiments

University of Pittsburgh, PITT PACC

< (17) >

- 2 Motivation
- 3 Model
- 4 Phenomenology

6 Conclusion

Swapnil Dutta

Majorons Echoes of Leptogenesis

Elevator Pitch	Motivation	Model	Phenomenology	Results	Conclusion	References	Backup slides
00	00	00	00000000	00000000	00	0●	0000000000
Reference	s						

- J. Casas and A. Ibarra, "Oscillating neutrinos and e,," *Nuclear Physics B*, vol. 618, no. 1–2, p. 171–204, Dec. 2001. [Online]. Available: http://dx.doi.org/10.1016/S0550-3213(01)00475-8
- [2] M. Fukugita and T. Yanagida, "Baryogenesis Without Grand Unification," *Phys. Lett. B*, vol. 174, pp. 45–47, 1986.
- [3] W. Buchmüller, P. Di Bari, and M. Plümacher, "Leptogenesis for pedestrians," *Annals of Physics*, vol. 315, no. 2, p. 305– 351, Feb. 2005. [Online]. Available: http://dx.doi.org/10.1016/j.aop.2004.02.003
- [4] C. Garcia-Cely and J. Heeck, "Neutrino lines from majoron dark matter," *Journal of High Energy Physics*, vol. 2017, no. 5, May 2017. [Online]. Available: http://dx.doi.org/10.1007/JHEP05(2017)102

- 2 Motivation
- 3 Model
- 4 Phenomenology
- **5** Results
- 6 Conclusion
- 7 References

Swapnil Dutta

Majorons Echoes of Leptogenesis

< 17 ▶

Figure 9: Dimensionless integral in $\gamma_{NN \to aa}$ (blue) and 1000* Interpolated function of $\gamma_{NN \to aa}$ vs z

Swapnil Dutta

Majorons Echoes of Leptogenesis

Figure 10: Dimensionless integral in $\gamma_{NL \rightarrow Ha}$ vs z

University of Pittsburgh, PITT PACC

Swapnil Dutta

Majorons Echoes of Leptogenesis

Elevator Pitch	Motivation	Model	Phenomenology	Results	Conclusion	References	Backup slides
00	00	00	00000000	00000000	00	00	0●●●0000000
Backup II	I						

Figure 11: Evolution of N_1 starting from zero initial abundance

- * ロ > * 個 > * 目 > * 目 > - 目 * つへの

University of Pittsburgh, PITT PACC

Swapnil Dutta

Majorons Echoes of Leptogenesis

Singlet Majoron Model and Majoronic seesaw

• SM + 3 singlet Majorana neutrino + scalar $\sigma = \frac{(f+\sigma_0)e^{i\theta}}{\sqrt{2}}$, $\theta = \frac{a}{f}$

Results

- f = Lepton Number breaking scale, $\sigma_0 =$ Heavy scalar
- $U(1)_L$ broken spontaneously

•
$$L = -\bar{L}yHN - \frac{1}{2}\bar{N^{C}}\kappa\sigma N$$
 +h.c.,
 $SSB \rightarrow \kappa\sigma \rightarrow M_{R} = \frac{\kappa f}{\sqrt{2}}, yH \rightarrow m_{D} = \frac{yv}{\sqrt{2}}$

Mass term for active and sterile neutrinos

$$\begin{pmatrix} 0 & m_D \\ m_D^T & m_R \end{pmatrix}$$

• For
$$M_R >> m_D$$
: $M_
u \simeq -m_D M_R^{-1} m_D^T$

University of Pittsburgh, PITT PACC

Backup slides

	Elevator Pitch	Motivation	Model	Phenomenology	Results	Conclusion	References	Backup slides
	00	00	00	0000000	00000000	00	00	00000●●●00
1								

 $NN \rightarrow aa$

• At tree level

$$\sum_{\text{spin}N1,N2} |\mathcal{M}_{NN \to aa}|^2 = \frac{|\lambda|^4 s}{8m_N^2} - \frac{5}{2}|\lambda|^4 + |\lambda|^4 \left\{ \frac{u - m_N^2}{t - m_N^2} + \frac{t - m_N^2}{u - m_N^2} \right\}$$
• λ is the ΦNN coupling constant
• $\sigma \propto |\lambda|^4$
• Contribution to Boltzmann equation
 $\gamma_{NN \to aa} = \frac{Tm_N^7}{2048\pi^5 f^4} \gamma_{NN \to aa}^{\text{dimless}}(z = \frac{m_N}{T})$

 $\Gamma_{NN \to aa} = 2 \left(\frac{N}{N^{eq}}\right)^2 \gamma_{NN \to aa} = \text{Fudge factor} \times \gamma_{NN \to aa}, \text{ Fudge factor} = 2 \left(\frac{N}{N^{eq}}\right)^2$

≡⇒ University of Pittsburgh, PITT PACC

< ∃⇒

Swapnil Dutta

Majorons Echoes of Leptogenesis

E

	Elevator Pitch 00	Motivation 00	Model 00	Phenomenology 00000000	Results 00000000	Conclusion	References 00	Backup slides 00000●●●00
-								

- $NL \rightarrow Ha$
 - At tree level $\sum_{spin} |\bar{M}|^2 = \frac{1}{4} \frac{(m_N^2 y_D^2)(u-m_L^2)}{f^2(t-m_N^2)}$
 - $\sigma \propto |\lambda|^2 y_D^2$
 - Assumption- One generation of L, one Majorana neutrino N
 - Contribution to Boltzmann equation $\gamma_{\text{NL}\rightarrow\text{Ha}} = \frac{T^4(m_N^2 y_D^2)}{(512\pi^5)f^2} \gamma_s(\frac{m_N}{T})$ $\gamma_s(\frac{m_N}{T}) \text{ dimensionless integral}$ • $\Gamma_{\text{NL}\rightarrow\text{Ha}} = \left(\frac{N}{N_{eq}}\right) \gamma_{\text{NL}\rightarrow\text{Ha}} = \text{Fudge factor } \times \gamma_{\text{NL}\rightarrow\text{Ha}}, \text{ Fudge factor} = \left(\frac{N}{N_{eq}}\right)$
 - L in thermal equilibrium

Elevator Pitch	Motivation	Model	Phenomenology	Results	Conclusion	References	Backup slides
	00	00	0000000	00000000	00	00	00000●●●00

• $a \rightarrow \overline{f}f$ • $\Gamma(a \to \bar{q}q) \simeq \frac{3m_{\theta}}{8\pi} |g_{lag'}^{P}|^2$ • $\Gamma(\mathbf{a} \to \overline{l}l') \simeq \frac{3m_{\theta}}{8\pi} \left(\left| \mathbf{g}_{JII'}^{P} \right|^{2} + \left| \mathbf{g}_{JII'}^{S} \right|^{2} \right)$ • $g_{JII'}^P \simeq \frac{m_l + m_{l'}}{16\pi^2 \nu} \left(\delta_{II'} T_3^{\ l} \text{tr} K + K_{II'} \right)$ • $g_{III'}^{S} \simeq \frac{m_l - m_{l'}}{16\pi^2 u} K_{II'}$ • $g_{lag'}^P \simeq \frac{m_q}{8\pi^2 n} \delta_{aa'} T_3^q \text{tr} K$ • $g_{laa'}^{S} = 0$ • $T_3^{d,l} = -\frac{1}{2} = -T_3^{u}$ • $K = \frac{m_D m_D^{\dagger}}{M_D}$

University of Pittsburgh, PITT PACC

Swapnil Dutta

Majorons Echoes of Leptogenesis

- $y_D L H^{\dagger} N$ term generalized to 3 generation of Leptons and in principle, multiple generations of N
- Assume 3 generations of N
- Then, $y_D L H^{\dagger} N \rightarrow (y_D)_{ij} L_i H^{\dagger} N_j$, $i, j \in \{1, 2, 3\}$
- $(m_D)_{ij} = \frac{(y_D)_{ij}v}{\sqrt{2}}$
- $m_D = iU\sqrt{d_I}R^T\sqrt{d_h}$
- $d_l = \text{diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3}), \ d_h = \text{diag}(m_{N_1}, m_{N_2}, m_{N_3})$
- R= complex Unitary matrix in general
- Our assumption- R= Identity, $m_{N_1} = m_N, m_{N_2} = m_{N_3} = f$

< ∃ >

Model Results References Backup slides

Casas-Ibarra Parameterization Incorporation II

• For
$$N_1 L \to Ha$$
, $\sum_{spin} |\mathcal{M}|^2 = \frac{\left(m_N^2(y_{D1i})^{\dagger} y_{Di1}\right)\left(u - m_L^2\right)}{f^2(t - m_N^2)}$
= $m_N^2 \left(y_D^{\dagger} y_D\right)_{11} \frac{\left(u - m_L^2\right)}{f^2(t - m_N^2)}$

- For normal ordering
 - $\sum_{i=1,2,3} \gamma_{N_1 L_i \to Ha} = \frac{T^4(m_N^3 m_\nu)}{(1024\pi^5)((f^2 v^2))} \gamma_s(\frac{m_N}{T})$
 - m₁, mass of lightest active neutrino mass eigenstate (which is $m_{\nu 1}$ for NO)
- For inverted ordering

•
$$\sum_{i=1,2,3} \gamma_{N_1 L_i \to Ha} = \frac{T^4 \left(m_N^3 \sqrt{\Delta_{m_{32}}^2 - \Delta_{m_{21}}^2 + m_\nu^2} \right)}{(1024\pi^5)((f^2 v^2))} \gamma_s \left(\frac{m_N}{T} \right)$$

 m_{ν} mass of lightest active neutrino mass eigenstate (which is $m_{\nu 3}$ for IO)