Status of the KATRIN Experiment

Byron A. Daniel for the KATRIN Collaboration

Department of Physics Carnegie Mellon University

DPF-Pheno, May 14th, 2024

Table of Contents

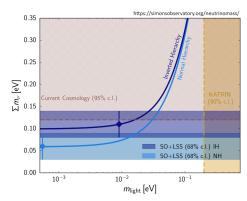
- 1 Direct Determination of the Neutrino Mass
- 2 The KATRIN Experiment
- 3 KATRIN Results KNM1-2
- Summary and Outlook

Table of Contents

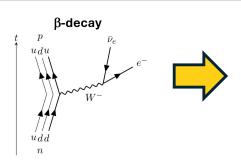
- Direct Determination of the Neutrino Mass
- The KATRIN Experiment
- KATRIN Results KNM1-2
- Summary and Outlook

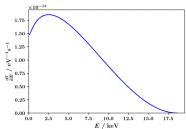
Determining Neutrino Mass Splittings via Oscillations

normal hierarchy (NH) inverted hierarchy (IH)

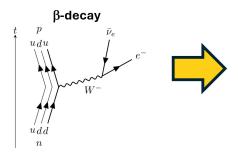

Which neutrino is the lightest? | All Things Neutrino (fnal.gov)

Determining the Sum of Neutrino Masses via Cosmology

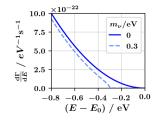

From cosmology, we can learn the sum of neutrino masses:

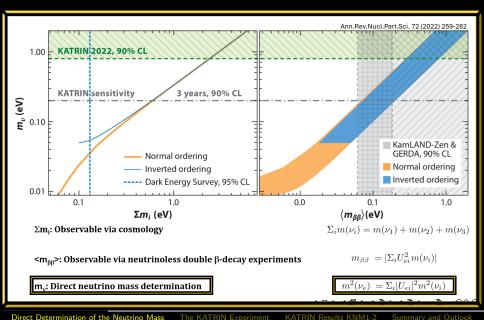

$$\Sigma_i m(\nu_i) = m(\nu_1) + m(\nu_2) + m(\nu_3)$$

This method is extremely sensitive, but the results are dependent on the model used...



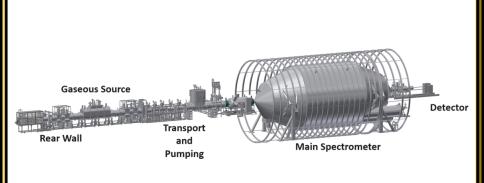
Directly Measuring the Neutrino Mass via Kinematics


Directly Measuring the Neutrino Mass via Kinematics

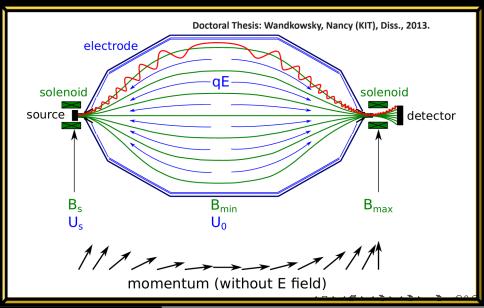

1.75 1.50 0.50 0.25 0.00 5.0 7.5 10.0 12.5 15.0 E / keV

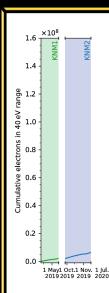
The neutrino mass scale can be probed by analyzing the shape change in the β spectrum near the endpoint.

These Neutrino Mass Observables Are Interconnected...

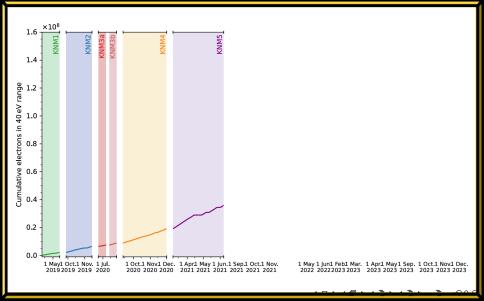

Table of Contents

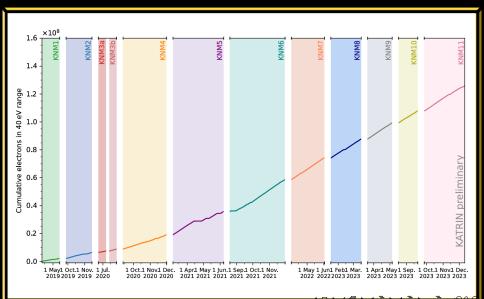
- Direct Determination of the Neutrino Mass
- The KATRIN Experiment
- KATRIN Results KNM1-2
- Summary and Outlook


The Karlsruhe Tritium Neutrino (KATRIN) Experiment

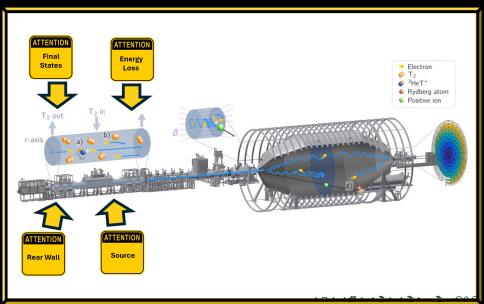

The KATRIN Beamline

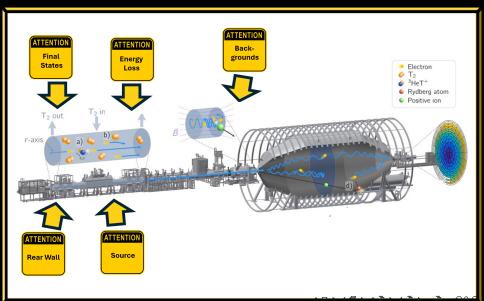
Magnetic Adiabatic Collimation with Electrostatic Filter

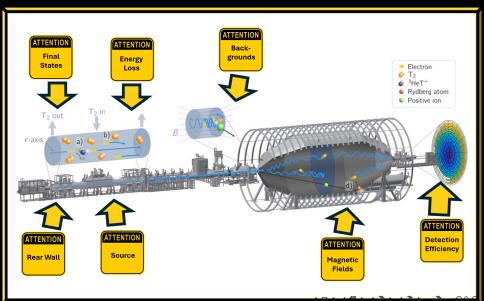

KATRIN Collected Electrons for First Results

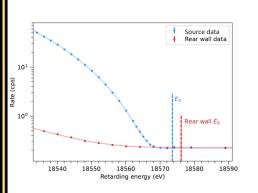

1 Oct.1 Nov1 Dec. 1 Aprl May 1 Jun.1 Sep.1 Oct.1 Nov.

1 May 1 Jun1 Feb1 Mar. 1 Apr1 May1 Sep. 1 Oct.1 Nov1 Dec.

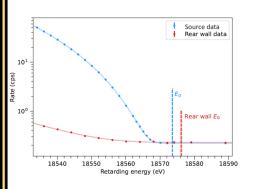

KATRIN Collected Electrons for Upcoming Results


KATRIN Collected Electrons through 2023

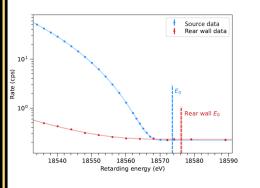

Systematics Breakdown


Systematics Breakdown

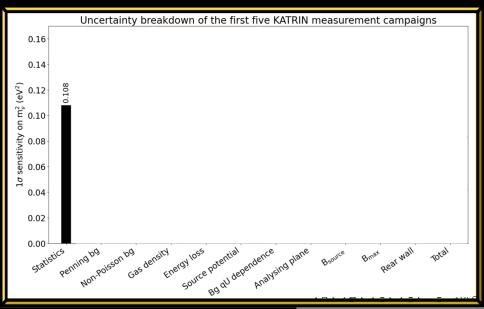
Systematics Breakdown

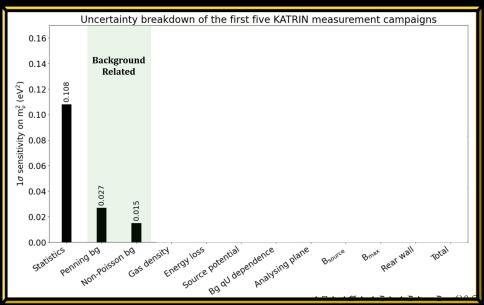


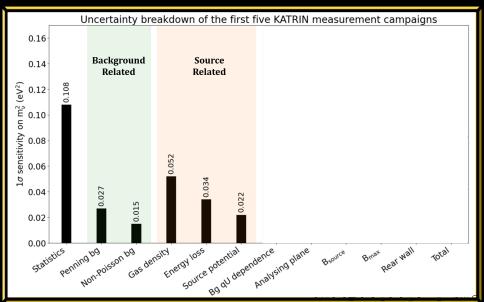
Example KATRIN Systematic: The Rear Wall

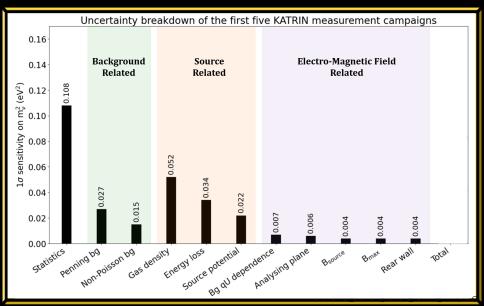

• The Rear Wall helps control the starting potential of electrons in the gaseous source.

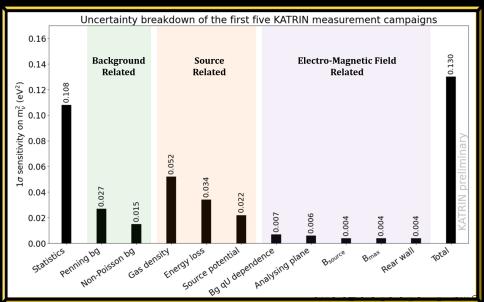
Example KATRIN Systematic: The Rear Wall




- The Rear Wall helps control the starting potential of electrons in the gaseous source.
- Tritium from the beamline chemisorbs onto the Rear Wall during operation, and this results in a tritium spectrum with a different shape and endpoint.


Example KATRIN Systematic: The Rear Wall




- The Rear Wall helps control the starting potential of electrons in the gaseous source.
- Tritium from the beamline chemisorbs onto the Rear Wall during operation, and this results in a tritium spectrum with a different shape and endpoint.
- Modeling a Rear Wall spectrum in fits mitigates this systematic.

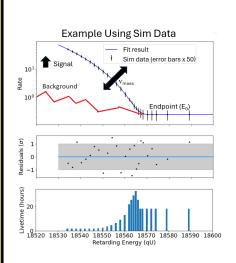
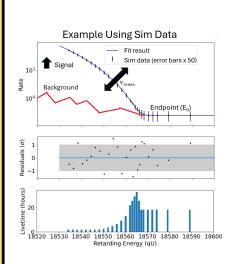
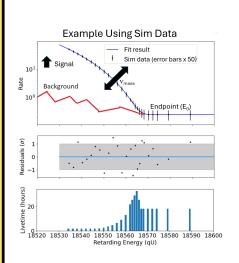


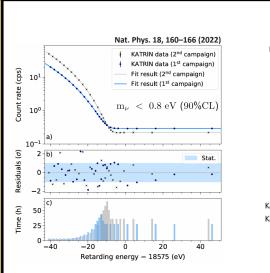
Table of Contents

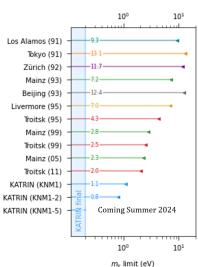

- Direct Determination of the Neutrino Mass
- The KATRIN Experiment
- KATRIN Results KNM1-2
- Summary and Outlook

How Does KATRIN Extract m_{ν}^2 from the T β -Spectrum?


Generate a model for the integral tritium β -spectrum and response of the apparatus

How Does KATRIN Extract m_{ν}^2 from the T β -Spectrum?


- Count the number of electrons produced with a specific amount of energy


How Does KATRIN Extract m_{ν}^2 from the T β -Spectrum?

- Count the number of electrons produced with a specific amount of energy
- Fit the measured data to the generated model and extract the spectrum parameters: neutrino mass, amplitude, endpoint, and background.

Currently Published KATRIN Results for KNM1-2

Table of Contents

- Direct Determination of the Neutrino Mass
- The KATRIN Experiment
- KATRIN Results KNM1-2
- Summary and Outlook

- KATRIN achieved the first direct neutrino-mass measurement with sub-eV sensitivity:
 - \bullet m $_{\nu} < 0.8$ eV (90% CL)

Status of the KATRIN Experiment

- KATRIN achieved the first direct neutrino-mass measurement with sub-eV sensitivity:
 - \bullet m $_{
 u} < 0.8$ eV (90% CL)
- KATRIN is currently running and planning to release its results for the combination of its first 5 campaigns in Summer 2024
 - Significant improvement of systematics and reduction of background
 - x6 the total statistics
 - Sensitivity: 0.5 eV (90% CL)

- KATRIN achieved the first direct neutrino-mass measurement with sub-eV sensitivity:
 - \bullet m_u < 0.8 eV (90% CL)
- KATRIN is currently running and planning to release its results for the combination of its first 5 campaigns in Summer 2024
 - Significant improvement of systematics and reduction of background
 - x6 the total statistics
 - Sensitivity: 0.5 eV (90% CL)
- KATRIN's final goal with the full data set:
 - Data taking will conclude end of 2025, but the experiment will later continue in the TRISTAN phase.
 - $_{\odot}$ Final Measurement Goal: $m_{\nu} < 0.3$ eV (90% CL)

- KATRIN achieved the first direct neutrino-mass measurement with sub-eV sensitivity:
 - \bullet m $_{
 u} < 0.8$ eV (90% CL)
- KATRIN is currently running and planning to release its results for the combination of its first 5 campaigns in Summer 2024
 - Significant improvement of systematics and reduction of background
 - x6 the total statistics
 - Sensitivity: 0.5 eV (90% CL)
- KATRIN's final goal with the full data set:
 - Data taking will conclude end of 2025, but the experiment will later continue in the TRISTAN phase.
 - $_{
 m o}$ Final Measurement Goal: ${
 m m}_{
 u} < 0.3$ eV (90% CL)
- Multiple beyond the neutrino mass searches: (Please look at recent Snowmass White Paper: J Phys G 49.10 (2022): 100501)

The KATRIN Collaboration

