Measurements of a LYSO Crystal Array for a Rare Pion Decay Experiment (PIONEER) David Hertzog; University of Washington

Physics Goals

10 x Improvements

in precision

- **Lepton Flavor Universality (e vs \mu to <10⁻⁴ in BR) Cabibbo Angle Anomaly (V_{ud}) pion beta decay)** $\pi^+ \to \pi^0 e^+ \nu(\gamma)$ $R_{e/\mu}^{theory} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))}$ illustrate challenge with this channel
- Sterile neutrinos and exotic decays: $\pi \to e\nu_H, \pi \to \mu\nu_H, \pi \to e\nu X$

All of these involve high-resolution calorimetry in the (unusual) "below 100 MeV" range

Interested in growing PIONEER Collaboration? Contact me: hertzog@uw.edu

How the Calorimeter is used in a pi-e-nu measurement

The key is to minimize the fraction of $\pi \rightarrow e$ events that hide below the Michel spectrum: "The Tail", and determine that fraction well

Must measure (and model) the full line shape

Resolution makes Hi / Lo boundaries more distinct

20 X_o deep calorimeter: *Tail fraction <0.5%*

Use a highly segmented, 5D tracking pion stopping detector to reject Michel and other low-energy events (subject of a separate talk) *Tail fraction uncertainty* <0.01%

See Y. Zhang; Pioneer presentation Room 121 at 3 PM today

What material might work?

- LXe (used in MEG II) has excellent properties, but cannot be segmented
- LYSO crystals look promising, but no one has yet achieved needed resolution
- Goal of this R&D: Test newer LYSO formulation with attention to details to achieve the resolution promised by the intrinsic properties.
- History: Some arrays tested, obtained 4.5% @70 MeV, which met their goals
 - Can we do better?

- Lutetium-yttrium oxyorthosilicate (LYSO):
 By weight: 72% Lutetium, 17% Oxygen, 6% Silicon, 3% Cerium (dopant), 2% Yttrium
- X₀ = 1.14 cm , R_M = 2.07 cm
- Decay time = 40 ns
- •_ Light yield **30,000** γ/**MeV**
- λ_{peak} 420 nm -> conventional PMTs
- Radioactive (< 1 MeV constant rumble)
- Non hygroscopic
- No Temp dependence
- n = 1.82
- Not so cheap … ☺

Fig. 2. Energy resolution as a function of the deposited energy for γ 's (dots) and e⁻ (full squares). Corresponding MC expectations are reported in circles and open squares, respectively. Simulation points are obtained without the 2.6% Gaussian smearing needed to describe real data.

LYSO Intrinsic Light Properties

An interesting fact, LYSO intrinsic radioactivity.
 → From the beta decay of Lu-176

- ③ Built in calibration!
- Slight concern when seeking best resolution at low energies from an array

Alva-Sánchez et al. Understanding the intrinsic radioactivity energy spectrum from 176Lu in LYSO/LSO scintillation crystals. Sci Rep 8, 17310 (2018).

Single crystal tests of recent SICCAS* formulation

- 2.5 × 2.5 × 18 cm³ (15.7 X0)
- Co-60 tomography to measure longitudinal uniformity / attenuation

ESR-wrapped LYSO crystal

*Shanghai Institute of Ceramics (made our PbF₂ crystals for g-2)

Energy resolution with "bench" sources

*Short lived (15 hr half life); emits a series of γ Source made by bombarding 18 MeV deuterons, produces neutrons that strike an Al button (done at CENPA Van de Graaff)

(Resolution is sigma of a Gaussian)

Measurements with 10 crystals

- Read out with R1450 Hamamatsu 19-mm PMTs using a customized, tapered voltage divider
- p-Li calibration following L3 @ LEP and MEG-II.
- We use a 1.4 MeV proton beam degraded and impinging on a LiF foil. @440 keV it excites a resonance, which decays with a 17.6 MeV gamma (and other lower energy lines)

Next, $\pi/\mu/e$ beam at PSI

- PiM1 is ideal up to a few hundred MeV/c
 - $\Delta P/P$ measured to be <0.6% for range of measurements
 - Positrons energy scan: 30 100 MeV

T0

• Muons @ 210 MeV/c used for transverse tomography

Timing Resolution vs Positron Energy

- Use T0 vs fitted Crystal waveform time
 - Plot is Xtal to Xtal time diff

Uniformity across Crystal Boundary at 70 MeV

• Used X-Y hodoscope and moving table to scan front of array

Energy Resolution vs Positron Energy

Notes: Many configurations were tested. Yellow filters (<u>out</u>/in); PMT dividers (built-in vs <u>tapered</u>); Only 7 tapered dviders were available at PSI; later made 10 made for follow-up run with p-Li source @CENPA

Next: Test 3 tapered crystals in a realistic final geometry for the experiment (concepts shown)

Summary

- LYSO tests of single crystals and array of 10 confirm performance expectations
 - Fast, Dense, Uniform, Bright
- Timing resolution <200 ps
- Energy resolution <2% at 70 MeV
 - Meets our target for π ->e decay
- A paper is being written
- Next Steps: Explore tapered crystals

The Team

O. Beesley^a, J. Carlton^b, B. Davis-Purcell^c, S. Foster^b, <u>K. Frahm</u>^d, L. Gibbons^e, T. Gorringe^b, D.W. Hertzog^a, <u>S. Hochrein</u>^d, <u>J. Hui</u>^f, P. Kammel^a, J. LaBounty^a, J. Liu^f, R. Roehnelt^a, P. Schwendimann^a, A. Soter^d, <u>B. Taylor</u>^a, E. Swanson^a

^aCenter for Nuclear Physics and Astrophysics (CENPA) University of Washington Seattle WA 98195 USA ^bUniversity of Kentucky USA ^cTRIUMF Canada ^dETH Zurich Switzerland ^eCornell University USA

^fShanghai Jiao Tong University Shanghai 200240 China

Pulse shape

MEG resolution with p-Li

3.6% Energy Resolution

MEG 1

MEG 2

Details of the p-Li method

A 440 keV proton excites the 17.6 MeV level which decays to both the ground state and to a 3 MeV level with a 14.6 MeV gamma.

We use a 1.4 MeV proton beam, which is appropriate degraded through theta foil and the LiF crystal itself to the resonance energy

Crystals with Mass Production Capability

Crystal	Nal:Tl	CsI:TI	Csl	BaF ₂	CeF ₃	PbF ₂	BGO	BSO	PbWO₄	LYSO:Ce	AFO Glasses	Sapphire:Ti
Density (g/cm ³)	3.67	4.51	4.51	4.89	6.16	7.77	7.13	6.8	8.3	7.40	4.6	3.98
Melting points (°C)	651	621	621	1280	1460	824	1050	1030	1123	2050	١	2040
X ₀ (cm)	2.59	1.86	1.86	2.03	1.65	0.94	1.12	1.15	0.89	1.14	2.96	7.02
R _M (cm)	4.13	3.57	3.57	3.10	2.39	2.18	2.23	2.33	2.00	2.07	2.89	2.88
λ _ι (cm)	42.9	39.3	39.3	30.7	23.2	22.4	22.7	23.4	20.7	20.9	26.4	24.2
Z _{eff}	50.1	54.0	54.0	51.6	51.7	77.4	72.9	75.3	74.5	64.8	42.8	11.2
dE/dX (MeV/cm)	4.79	5.56	5.56	6.52	8.40	9.42	8.99	8.59	10.1	9.55	6.84	6.75
λ _{peak} ^a (nm)	410	560	420 310	300 220	340 300	١	480	470	425 420	420	365	750
Refractive Index ^b	1.85	1.79	1.95	1.50	1.62	1.82	2.15	2.68	2.20	1.82	Λ	1.76
Normalized Light Yield ^{a,c}	120	190	4.2 1.3	42 4.8	8.6	١	25	5	0.4 0.1	100	1.5	١
Total Light yield (ph/MeV)	35,000	58,000	1700	13,000	2,600	N	7,400	1,500	130	30,000	450	λ
Decay time ^a (ns)	245	1220	30 6	600 0.5	30	١	300	100	30 10	40	40	3200
Hygroscopic	Yes	Slight	Slight	No	No	No	No	No	No	No	No	No

Ren-yuan Zhu, Caltec

LYSO Intrinsic radioacivity

Figure 1. (a) Simplified ^{176}Lu decay scheme and (b) β -particle energy spectrum corresponding to the β_1 transition.

Figure 3. Analytical (solid line), convolved with a varying Gaussian kernel, and experimental (dashed line) LYSO normalized energy spectra.

Figure 5. Calculated LYSO energy spectra for 1.0 cm thick square base prisms of different sizes.