Paper link: <u>arXiv:2403.01556</u>

# Search for emerging jets using CMS Run 2 data



Claire Savard on behalf of the CMS collaboration University of Colorado, Boulder 13 May 2024





#### Emerging jets (EMJ) theory

- Dark matter model = QCD-like hidden sector
- Dark hadrons with ~  $\Lambda_{dark}$  (GeV), dark pions unstable  $m_{\pi_{dark}} < \Lambda_{dark}$
- Heavy mediator particle ~ TeV couples to dark and visible sectors
- Energy scales reachable at LHC



#### EMJ production at the LHC

1. 
$$pp \rightarrow 2X_{dark} \rightarrow 2(qQ_{dark})$$
  
2.  $Q_{dark} \xrightarrow{hadronizes} N \pi_{dark} \&$   
 $\pi_{dark} \xrightarrow{travel c\tau} SM particles$ 

Free parameters:

- *m<sub>X</sub>*: [1, 2.5] TeV
- $m_{\pi_{dark}}$ : [6, 20] GeV
- $c\tau_{\pi_{dark}}$ : [1, 1000] mm





G

#### EMJs in CMS detector

- General-purpose particle detector
- Silicon tracker:
  - Charged particle reconstruction
  - Within 3.8 T solenoid for momentum resolution
  - Vertex  $z_0$  resolution of ~15  $\mu$ m
  - Extends from collision point to 1 m
- $c\tau_{\pi_{dark}}$  1 1000 mm, contained in tracker







#### EMJ coupling scenarios

- 1. Unflavored down scenario
  - Dark quarks couple to down quarks ONLY
  - All  $\pi_{dark}$  have same  $c\tau$
  - Previous CMS search (arXiv:1810.10069)
- 2. Flavor-aligned down scenario
  - Dark quarks couple to down-type quarks ONLY (d, s, b)
  - $\pi_{dark}$  lifetime depends on dark pion composition
- Scenarios phenomenologically different, search methods tuned separately







#### Event selection

- $\geq$  4 high  $p_T$  jets
- High event  $H_T$  ( =  $\sum_{jets} p_T$ )
- $\geq$  2 EMJ-tagged jets



13 May 2024

DPF-Pheno 2024: EMJ search

### Jet tagging

- 1. Jet variable selections (cut-based)
  - Unflavored: leverage track displacement
  - Flavor-aligned: leverage track multiplicity
- 2. Graph neural network classifier
  - 2 models trained separately on unflavored and flavor-aligned scenarios





#### Background estimation

Estimate # of bkg. events pass into SR using CR events and mistag rates from FR

FR

$$N_{\rm SR} = \sum_{evt\in CR} SF \sim \sum_{evt\in CR} \frac{1}{2} \sum_{j\notin tagged} \epsilon(p_{T,j})$$

- Fully data-driven estimation •
- Mistag rate ( $\epsilon$ ) binned along jet  $p_T$





#### Background estimation

Estimate # of bkg. events pass into SR using CR events and mistag rates from FR

FR

$$N_{\rm SR} = \sum_{evt \in \rm CR} SF \sim \sum_{evt \in \rm CR} \frac{1}{2} \sum_{j \notin tagged} \epsilon(p_{T,j})$$

- Fully data-driven estimation
- Mistag rate ( $\epsilon$ ) binned along jet  $p_T$





55

DPF-Pheno 2024: EMJ search

#### Background estimation

Estimate # of bkg. events pass into SR using CR events and mistag rates from FR

$$N_{\text{SR}} \sim \sum_{evt \in \text{CR}} \frac{1}{2} \sum_{j \notin \text{tagged}} B^{\text{CR}} \epsilon(b, p_{T,j}) + (1 - B^{\text{CR}}) \epsilon(l, p_{T,j})$$

- Fully data-driven estimation
- Mistag rate ( $\epsilon$ ) binned along jet  $p_T$
- B-jet discriminator to calculate mistag on bs separately and b-jet fraction  $(B^{CR})$



Mistag rate

DPF-Pheno 2024: EMJ search

#### Results

- Different event selection criteria for various EMJ free parameters  $(m_{X_{dark}}, m_{\pi_{dark}}, c\tau_{\pi_{dark}})$
- Systematic uncertainties on *ε* parameterization, jet flavor estimation, CR/FR selection

|                         | Selection set | Estimation $\pm$ stat. $\pm$ syst. C                 | Observed yield |
|-------------------------|---------------|------------------------------------------------------|----------------|
| Cut-based<br>unflavored | u-set 1       | $56  {}^+ \; {}^9_5  \pm 20$                         | 67             |
|                         | u-set 2       | $20.0 \ \ {}^+_{-} \ \ {}^{4.3}_{2.5} \ \pm \ \ 7.0$ | 21             |
|                         | u-set 3       | 22.9 $^+_{-}$ $^{7.3}_{2.1}$ $\pm$ 4.9               | 24             |
|                         | u-set 4       | 7.9 $^+_{-1.6}$ $^+_{1.6}$ $\pm$ 2.2                 | 10             |
|                         | u-set 5       | 11.3 $^+$ $^{2.7}_{-}$ $\pm$ 2.0                     | 13             |
| Cut-based flavored      | a-set 1       | 8.8 $^+_{-}$ $^{2.4}_{1.0}$ $\pm$ 2.0                | 16             |
|                         | a-set 2       | $1.67 \ {}^+ \ {}^{0.49}_{0.23} \pm \ 0.38$          | 3              |
|                         | a-set 3       | $1.97 \ ^+_{-} \ ^{0.47}_{0.22} \pm \ 0.37$          | 2              |
|                         | a-set 4       | $2.30 \ {}^+_{-} \ {}^{0.81}_{0.30} \pm \ 0.39$      | 3              |
|                         | a-set 5       | 10.2 $^+$ $^+$ $^{2.3}$ $\pm$ 3.4                    | 16             |
| GNN<br>unflavored       | uGNN set 1    | 15.6 $^+_{-}$ $^{5.4}_{1.9}$ $\pm$ 3.8               | 18             |
|                         | uGNN set 2    | $0.73 \ ^+_{-} \ \ ^{0.44}_{0.16} \pm \ \ 0.27$      | 0              |
|                         | uGNN set 3    | 7.6 $^+_{-1.3}$ $^{3.5}_{1.3}$ $\pm$ 2.3             | 9              |
| GNN flavored            | aGNN set 1    | $45  {}^{+ \ 18}_{- \ 8}  \pm  16$                   | 59             |
|                         | aGNN set 2    | $0.30 \ ^+_{-} \ ^{0.23}_{0.07} \pm \ 0.18$          | 1              |
|                         | aGNN set 3    | $3.8 \ {}^+ \ {}^{2.2}_{0.7} \ \pm \ 2.0$            | 5              |

No statistically significant excess between estimated and observed # of events



#### Exclusion limit results – unflavored

- Large gain in sensitivity using GNN at lower  $c\tau_{\pi_{dark}}$
- Limits pushed back by  $\sim 400$  GeV compared to previous publication





#### Exclusion limit results – flavor-aligned

- Completely new limits, GNN has best sensitivity
- Exclusion of up to ~1950 GeV in  $m_{X_{dark}}$





#### Conclusions

- Pushed back previous limits on unflavored  $m_{\pi_{dark}} = 10$  GeV models
- Completely new limits for:
  - Unflavored  $m_{\pi_{dark}} = 20 \text{ GeV}$
  - All flavor-aligned models
- One of first analyses to use GNN tagger
- GNN has better limits than cut-based algorithm by 150 600 GeV in  $m_{X_{dark}}$  everywhere



## Backup



#### EMJ production at LHC

• 2 methods of  $X_{dark}$  production:



• Pairs of  $X_{dark}$  from gluon (g), decay to visible (q) and dark quarks ( $\overline{Q}_{dark}$ )

#### GNN EMJ tagger

- Associate tracks to jets within 0.8 angular separation from jet axis
- Track coordinates with respect to jet axis  $(\Delta \phi, \Delta \eta)$
- Track features within jet:
  - Angular separation  $\Delta R$
  - $p_T$  and  $p_T$  fraction
  - Impact parameters  $d_{xy}$  and  $d_z$
- GNN score output used to classify
- 2 GNNs: unflavored and aligned



DPF-Pheno 2024: EMJ search

#### Mistag rate calculations

$$\begin{array}{c} 2 \text{ equations, 2 unknowns: solve for } \epsilon(b/l, p_T) \\ \text{Mistag rate equations:} \\ FR_E: \quad \epsilon^E(p_T) = B^E(p_T) \overline{\epsilon(b, p_T)} + (1 - B^E) \overline{\epsilon(l, p_T)} \\ FR_S: \quad \epsilon^S(p_T) = B^S(p_T) \overline{\epsilon(b, p_T)} + (1 - B^S) \overline{\epsilon(l, p_T)} \\ \epsilon(l, p_T) \end{array}$$

b-enhanced and b-suppressed region defined using b-jet discriminator on a jet in FR, can measure mistag rate directly

Calculate b-jet fraction using DeepJet discriminator template



#### Mistag rate scale factor (SF)

Use flavor averaging\* to get final background estimation:

$$N_{SR} \sim \sum_{evt \in CR} \frac{1}{2} \sum_{j \notin tagged} \epsilon(f_j, p_{T,j})$$
$$N_{SR} \sim \sum_{evt \in CR} \frac{1}{2} \sum_{j \notin tagged} B^{CR} \epsilon(b, p_{T,j}) + (1 - B^{CR}) \epsilon(l, p_{T,j})$$

\*Same method implemented in <u>arXiv:1810.10069</u>



#### Background uncertainties

Most accurate background estimation

 $Est_{true}^{JetHT}\left(\epsilon_{true}^{JetHT}(\vec{\theta}_{\infty})\right)$ 

Cannot evaluate  $\epsilon$  in infinitely fine jet kinematics bins

Cannot evaluate  $\epsilon$  in SR, potential signal contamination

Cannot determine flavor directly in data

$$Est_{true}^{JetHT} \left( \epsilon_{true}^{JetHT}(p_{T}) \right)$$

$$\stackrel{\text{mination}}{Est_{true}} \left( \epsilon_{true}^{\gamma+jets}(p_{T}) \right)$$

$$\stackrel{\text{I}}{Est_{avg}} \left( \epsilon_{inv}^{\gamma+jets}(p_{T}) \right)$$

What we CAN evaluate

13 May 2024

Each change leads to uncertainty in final estimation

#### Signal uncertainties

| Uncertainty source          | Unflavored |       | Flavor-aligned |       |
|-----------------------------|------------|-------|----------------|-------|
|                             | mean       | std.  | mean           | std.  |
| Integrated luminosity       | 1.8        | 0.6   | 1.8            | 0.6   |
| Trigger efficiency          | 0.3        | 0.1   | 0.3            | 0.1   |
| JES                         | 1.3        | 0.9   | 0.7            | 0.4   |
| JER                         | 0.2        | 0.3   | 0.2            | 0.1   |
| Pileup reweighting          | 0.9        | 0.8   | 1.0            | 0.9   |
| Track modeling in sim.      | 0.3        | 0.8   | 0.5            | 0.6   |
| PDF                         | < 0.1      | < 0.1 | < 0.1          | < 0.1 |
| $\mu_{ m F}$ , $\mu_{ m R}$ | < 0.1      | < 0.1 | < 0.1          | < 0.1 |

#### Evaluated per EMJ signal sample

