A simplified model of heavy vector singlets at the LHC and future colliders

Michael J. Baker^a, **Timothy Martonhelyi**^a, Andrea Thamm^a, Riccardo Torre^b ^aThe University of Massachusetts Amherst, ^bINFN Genova

DPF-Pheno 2024 Conference University of Pittsburgh/Carnegie Mellon University May 16

Simplified models provide a model-independent framework for doing collider physics phenomenology:

- Only consider one or two new particles/interactions
- Incredibly useful for direct searches of BSM physics

arXiv: 1402.4431

Simplified models provide a model-independent framework for doing collider physics phenomenology:

- Only consider one or two new particles/interactions
- Incredibly useful for direct searches of BSM physics

Simplified models provide a model-independent framework for doing collider physics phenomenology:

- Only consider one or two new particles/interactions
- Incredibly useful for direct searches of BSM physics

Simplified models provide a model-independent framework for doing collider physics phenomenology:

- Only consider one or two new particles/interactions
- Incredibly useful for direct searches of BSM physics

Introduce two new vectors that transform as

$$\begin{split} V^0 &\sim (\mathbf{1}, \mathbf{1}, 0) \qquad \qquad \mathcal{L}_{V^0} \supset i \frac{g_V}{2} c_H^0 V_\mu^0 H^\dagger \overset{\leftrightarrow}{D}^\mu H + \frac{g_V}{2} c_\Psi^0 V_\mu^0 J_\Psi^\mu \\ V^\pm &\sim (\mathbf{1}, \mathbf{1}, \pm 1) \qquad \qquad \mathcal{L}_{V^+} \supset i \frac{g_V}{\sqrt{2}} c_H^+ V_\mu^+ H^\dagger \overset{\leftrightarrow}{D}^\mu \tilde{H} + \frac{g_V}{\sqrt{2}} c_q^+ V_\mu^+ J_q^\mu \end{split}$$

Introduce two new vectors that transform as

$$V^{0} \sim (\mathbf{1}, \mathbf{1}, 0) \qquad \qquad \mathcal{L}_{V^{0}} \supset i \frac{g_{V}}{2} c_{H}^{0} V_{\mu}^{0} H^{\dagger} \overset{\leftrightarrow}{D}^{\mu} H + \frac{g_{V}}{2} c_{\Psi}^{0} V_{\mu}^{0} J_{\Psi}^{\mu}$$
$$V^{\pm} \sim (\mathbf{1}, \mathbf{1}, \pm 1) \qquad \qquad \mathcal{L}_{V^{\pm}} \supset i \frac{g_{V}}{\sqrt{2}} c_{H}^{\pm} V_{\mu}^{\pm} H^{\dagger} \overset{\leftrightarrow}{D}^{\mu} \tilde{H} + \frac{g_{V}}{\sqrt{2}} c_{q}^{\pm} V_{\mu}^{\pm} J_{q}^{\mu}$$

The combinations g_VC_X parameterise decay rates and cross sections

Introduce two new vectors that transform as

Introduce two new vectors that transform as

These "simplified" parameters provide a bridge between experiment and UV complete models, with very broad applicability to BSM theories

Channel	$V^0 \in (1,1)_0$	$V^+ \in (1, 1)_1$	
ll	✓	×	
l u	×	×	$d\bar{d}, s\bar{s}$ $b\bar{b}$
$l u_R$	×	✓	0.12 $u\bar{u}, c\bar{c}$ $t\bar{t}$
jj	✓	✓	
tb	×	✓	$c_X^0 = 1$
tt	✓	×	
WW	✓	×	\sim 0.06
ZZ	×	×	
WZ	×	✓	$\nu\bar{\nu}$
Zh	 ✓ 	×	
Wh	×	✓	$0.00 - 10^0$ 10
$W\gamma$	×	 ✓ 	$m_{\rm TeV}$ [TeV]
hh	×	×	

Under the narrow width approximation, the DY production cross-section goes as the (inverse partial widths) x (parton luminosities):

Under the narrow width approximation, the DY production cross-section goes as the (inverse partial widths) x (parton luminosities):

Under the narrow width approximation, the DY production cross-section goes as the (inverse partial widths) x (parton luminosities):

We can extrapolate to future colliders of energy S and luminosity L. Only need to know the parton luminosities at appropriate CoM energy.

A. Thamm, R. Torre, A. Wulzer: 1502.01701

Under the narrow width approximation, the DY production cross-section goes as the (inverse partial widths) x (parton luminosities):

We can extrapolate to future colliders of energy S and luminosity L. Only need to know the parton luminosities at appropriate CoM energy.

A. Thamm, R. Torre, A. Wulzer: 1502.01701

We can extrapolate to future colliders of

energy S and luminosity L. Only need to

know the parton luminosities at

Under the narrow width approximation, the DY production cross-section goes as the (inverse partial widths) x (parton luminosities):

Experimental limits on the cross-section times branching ratio are readily converted into limits in the simplified parameter space:

Shaded regions correspond to various ATLAS & CMS searches

Explicit models easily mapped onto this space:

- Model D weakly coupled gauge extension
- Model E strongly coupled composite Higgs

Zero quark coupling in model ${\rm E} \rightarrow$ inaccessible to Drell-Yan

Experimental limits on the cross-section times branching ratio are readily converted into limits in the simplified parameter space:

Shaded regions correspond to various ATLAS & CMS searches

Explicit models easily mapped onto this space:

- Model D weakly coupled gauge extension
- Model E strongly coupled composite Higgs

Zero quark coupling in model ${\rm E} \rightarrow$ inaccessible to Drell-Yan

Experimental limits on the cross-section times branching ratio are readily converted into limits in the simplified parameter space:

Experimental limits on the cross-section times branching ratio are readily converted into limits in the simplified parameter space:

Experimental limits on the cross-section times branching ratio are readily converted into limits in the simplified parameter space:

Simplified models are model-independent, but it is easy to match onto a wide variety of explicit models. We can take our previous limits and extrapolations and present them as exclusions for a given mass/coupling strength:

Simplified models are model-independent, but it is easy to match onto a wide variety of explicit models. We can take our previous limits and extrapolations and present them as exclusions for a given mass/coupling strength:

	Model C		Model D	Model E		Model C			Model D	Model E	
	$U(1)_{B-xL}$	$U(1)_R$	$U(1)_{q+xu}$	$SU(2)_R \times U(1)_X$	SO(5)/SO(4)		$U(1)_{B-xL}$	$U(1)_R$	$U(1)_{q+xu}$	$SU(2)_R \times U(1)_X$	SO(5)/SO(4)
g_V	g_X	g_X	g_X	g_R	$g_{ ho}$	g_V	g_X	g_X	g_X	g_R	$g_{ ho}$
$m_{\mathcal{V}^0}$	$m_{\mathcal{V}^0}$	$m_{\mathcal{V}^0}$	$m_{\mathcal{V}^0}$	$\frac{g_V v_R}{2k_V}$	$\frac{m_{ ho}}{k_V}$	$m_{\mathcal{V}^+}$	∞	∞	∞	$\frac{g_V v_R}{2}$	$m_{ ho}$
c_Q^0	$\frac{2}{3}$	0	$\frac{2}{3}$	$-2Y_Q \frac{g'^2}{g_V^2 k_V}$	$2Y_Q \frac{g'^2}{g_V^2 k_V}$	c_q^+	-	-	-	1	0
c_U^0	$\frac{2}{3}$	$-\frac{2}{3}$	2x/3	$\frac{1}{k_V} - 2Y_U \frac{g'^2}{g_V^2 k_V}$	$2Y_U \frac{g'^2}{g_V^2 k_V}$	c_H^+	-	-	-	0	$-\frac{a_{ ho}^2}{2}$
c_D^0	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2(2-x)}{3}$	$-\frac{1}{k_V}-2Y_D\frac{g'^2}{g_V^2k_V}$	$2Y_D \frac{g'^2}{g_V^2 k_V}$	c^+_{VVHH}	-	-	-	$\frac{1}{4}$	0
c_L^0	-2x	0	-2	$-2Y_L \frac{g^{\prime 2}}{g_V^2 k_V}$	$2Y_L \frac{g^{\prime 2}}{g_V^2 k_V}$	c_{VVB}^+	-	-	-	1	1
c_E^0	-2x	$\frac{2}{3}$	$-\frac{2(2+x)}{3}$	$-\frac{1}{k_V} - 2Y_E \frac{g'^2}{g_V^2 k_V}$	$2Y_E \frac{g^{\prime 2}}{g_V^2 k_V}$	c_{VVV}^0	-	-	-	k_V	$-k_V$
c_H^0	0	$-\frac{2}{3}$	$\frac{2(x-1)}{3}$	k_V	$-\frac{1}{k_V}\left(a_ ho^2-\frac{g^{\prime 2}}{g_V^2}\right)$	c_{VVV}^{+}	-	-	-	k_V	$-k_V$
c^0_{VVHH}	0	$\frac{4}{9}$	$\frac{4(x-1)^2}{9}$	$\frac{k_V^2}{4}$	$-\frac{g'^2}{2g_V^2k_V^2}\left(a_\rho^2 - \frac{g'^2}{2g_V^2}\right)$						

Simplified models are model-independent, but it is easy to match onto a wide variety of explicit models. We can take our previous limits and extrapolations and present them as exclusions for a given mass/coupling strength:

<u>Model D</u>: $SU(2)_R \times U(1)_X$

Asymmetric left-right gauge extension

Simplified models are model-independent, but it is easy to match onto a wide variety of explicit models. We can take our previous limits and extrapolations and present them as exclusions for a given mass/coupling strength:

<u>Model D</u>: $SU(2)_R \times U(1)_X$

Asymmetric left-right gauge extension

• LHC:

5–7 TeV di-lepton, 4–5 TeV di-boson

Simplified models are model-independent, but it is easy to match onto a wide variety of explicit models. We can take our previous limits and extrapolations and present them as exclusions for a given mass/coupling strength:

<u>Model D</u>: $SU(2)_R \times U(1)_X$

Asymmetric left-right gauge extension

• LHC:

5–7 TeV di-lepton, 4–5 TeV di-boson

• Future:

14 TeV HL-LHC - 7–9 TeV

Simplified models are model-independent, but it is easy to match onto a wide variety of explicit models. We can take our previous limits and extrapolations and present them as exclusions for a given mass/coupling strength:

<u>Model D</u>: $SU(2)_R \times U(1)_X$

Asymmetric left-right gauge extension

• LHC:

5–7 TeV di-lepton, 4–5 TeV di-boson

• Future:

14 TeV HL-LHC - 7–9 TeV 27 TeV HE-LHC - 10–17 TeV

Simplified models are model-independent, but it is easy to match onto a wide variety of explicit models. We can take our previous limits and extrapolations and present them as exclusions for a given mass/coupling strength:

<u>Model D</u>: $SU(2)_R \times U(1)_X$

Asymmetric left-right gauge extension

• LHC:

5–7 TeV di-lepton, 4–5 TeV di-boson

• Future:

14 TeV HL-LHC - 7–9 TeV 27 TeV HE-LHC - 10–17 TeV 100 TeV FCC-hh - 30–50 TeV

Simplified models are model-independent, but it is easy to match onto a wide variety of explicit models. We can take our previous limits and extrapolations and present them as exclusions for a given mass/coupling strength:

Model E:

Composite Higgs (strongly coupled)

Simplified models are model-independent, but it is easy to match onto a wide variety of explicit models. We can take our previous limits and extrapolations and present them as exclusions for a given mass/coupling strength:

Model E:

Composite Higgs (strongly coupled)

• LHC:

7 TeV di-lepton, 4 TeV di-boson

Simplified models are model-independent, but it is easy to match onto a wide variety of explicit models. We can take our previous limits and extrapolations and present them as exclusions for a given mass/coupling strength:

Model E:

Composite Higgs (strongly coupled)

• LHC:

7 TeV di-lepton, 4 TeV di-boson

• Future:

14 TeV HL-LHC - 9 TeV 27 TeV HE-LHC - 17 TeV 100 TeV FCC-hh - 50 TeV

Summary

Model-independent analyses are essential tools to bridge the theoretical world of model building and the experimental world of resonance searches

- Simplified models are heavily used in collider phenomenology, allowing for a quick and easy comparison with many explicit models
- Vector singlets are a common prediction of BSM theories (weakly coupled gauge extensions, composite Higgs), and we can determine which of these theories the current LHC can probe/rule out
- We can easily project current limits to future colliders of higher energy/luminosity for a rough sense of their reach
- The energy frontier remains key in exploring the wide range of BSM physics theories