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Simplified models provide a model-independent framework for doing collider physics phenomenology:

● Only consider one or two new particles/interactions
● Incredibly useful for direct searches of BSM physics
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Heavy vector singlets
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The combinations gVcX parameterise 
decay rates and cross sections

These “simplified” parameters provide a bridge between experiment and UV complete models, with very 
broad applicability to BSM theories
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Two-body final states
Many decay channels are open to exploration under the simplified model, and it is easy to combine 
searches. For heavy vector singlets, the neutral vector decays to leptons/quarks/bosons, and the charged 
vector decays to quarks/bosons:
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Under the narrow width approximation, the 
DY production cross-section goes as the 
(inverse partial widths) x (parton luminosities):
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Order of magnitude 
higher mass reach 

than the LHC!
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Experimental limits on the cross-section times branching ratio are readily converted into limits in the 
simplified parameter space:
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We can take our previous limits and extrapolations and present them as exclusions for a given 
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Summary

● Simplified models are heavily used in collider phenomenology, allowing for a quick and 
easy comparison with many explicit models

● Vector singlets are a common prediction of BSM theories (weakly coupled gauge 
extensions, composite Higgs), and we can determine which of these theories the current 
LHC can probe/rule out

● We can easily project current limits to future colliders of higher energy/luminosity for a 
rough sense of their reach

● The energy frontier remains key in exploring the wide range of BSM physics theories
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Model-independent analyses are essential tools to bridge the theoretical world of model 
building and the experimental world of resonance searches
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