Two different types of series expansions valid at strong coupling

Ariel Edery

Department of Physics and Astronomy, Bishop's University

DPF-Pheno Meeting 2024, May 13-17, Pittsburgh, PA

DPF-Pheno Meeting 2024, May 13-17, Pitt

Ariel Edery (Bishop's University) Two different types of series expansions valid 1/28

Perturbative expansion and asymptotic series

- The path integral in quantum mechanics and quantum field theory is typically expanded perturbatively in powers of of the coupling. This is well-known to yield an asymptotic series.
- An asymptotic series can still be useful at weak coupling but fails completely at strong coupling.
- We study two different types of series expansions: the first is the usual one in powers of the coupling but the second is a series expansion of the quadratic part (the interaction is left alone).
- The first is an asymptotic series but the second is an absolutely convergent series that is valid at strong coupling.
- We revisit the first series, identify why it diverges and fix the problem to obtain an absolutely convergent series.

In non-perturbative studies, the prototypical example used to illustrate how perturbative expansions yield an asymptotic series is the following one-dimensional integral:

$$I = \int_{-\infty}^{\infty} e^{-ax^2 - \lambda x^4} \, dx$$

where a and λ are positive real constants. The above integral has an exact analytical expression given by

$$I = \frac{1}{2} e^{\frac{a^2}{8\lambda}} \sqrt{\frac{a}{\lambda}} \operatorname{BesselK} \left[\frac{1}{4}, \frac{a^2}{8\lambda} \right]$$

DPF-Pheno Meeting 2024, May 13-17, Pitt

where BesselK[n, z] is the modified Bessel function of the second kind.

First series Expansion of quartic term in powers of coupling λ

A series expansion in powers of λ of the quartic term to order n is given by

$$F_{1}(n) = \int_{-\infty}^{\infty} dx \, e^{-a \, x^{2}} \sum_{j=0}^{n} \frac{(-\lambda \, x^{4})^{j}}{j!} = \sum_{j=0}^{n} \frac{(-\lambda)^{j}}{j!} \int_{-\infty}^{\infty} dx \, e^{-a \, x^{2}} x^{4j}$$
$$= \sum_{j=0}^{n} \frac{(-1)^{j}}{j!} \left(\frac{\lambda}{a^{2}}\right)^{j} a^{-1/2} \, \Gamma[1/2 + 2j] \, .$$

This is an asymptotic series since $\lim_{n\to\infty} \left(\frac{\lambda}{a^2}\right)^n \Gamma[1/2+2n]/n! \to \infty$.

We plot $F_1(n)$ for three values of λ : 0.01, 0.1 and 1.0 (setting a = 1). For each λ , we present a table comparing $F_1(n)$ to the exact analytical value. All values are quoted to eight digit accuracy.

Case $\lambda = 0.01$: weak coupling

Plateaus to the correct value before diverging \Rightarrow reliable perturbative expansion at weak coupling

	λ=0.01		
Exact value is I= 1.7596991			% error
n	F1(n)	% error] <u>.</u> [·
0	1.7724539	0.73	
1	1.7591604	0.031	
2	1.7597420	2.5 x 10 ⁻³	
3	1.7596941	2.9 x 10 ⁻⁴	
4	1.7596999	4.0 x 10 ⁻⁵	3
5	1.7596990	8.2 x 10 ⁻⁶	
6-51	1.7596991	0	2
60	1.7597507	2.9 x 10 ⁻³	
67	1.7254544	1.95],[
70	2.4570073	40] '[
80	39560.681	> 100] [.
90	~1010	> 100	•**
200	~1092	> 100	40 50 60 50
			v 1v 2v 30 40 30 00

Case $\lambda = 0.1$: intermediate value

No plateau region but dips close to correct value early on before diverging \Rightarrow less reliable

Case $\lambda = 1$: strong coupling

Diverges early on (never close to correct value) \Rightarrow completely unreliable

Second series Expansion of the quadratic term

We perform a series expansion of the quadratic term in the original integral to order n. This yields

$$F_{2}(n) = \int_{-\infty}^{\infty} dx \, e^{-\lambda \, x^{4}} \sum_{j=0}^{n} \frac{(-a \, x^{2})^{j}}{j!} = \sum_{j=0}^{n} \frac{(-a)^{j}}{j!} \int_{-\infty}^{\infty} dx \, e^{-\lambda \, x^{4}} \, x^{2j}$$
$$= \sum_{j=0}^{n} \frac{(-1)^{j}}{j!} \left(\frac{a^{2}}{\lambda}\right)^{j/2} \frac{1}{2 \, \lambda^{1/4}} \, \Gamma[1/4 + j/2] \, .$$

Note that this a series expansion in powers of the inverse coupling λ . The series is absolutely convergent (ratio test): $\lim_{n \to \infty} \frac{\Gamma[1/4 + (n+1)/2]}{(n+1)\Gamma[1/4 + n/2]} \to 0.$ Converges faster at strong coupling!

Case: $\lambda = 0.01$: weak coupling

Converges at weak coupling to the exact value but very slowly (at order n = 159!) \Rightarrow not *convenient* to use at weak coupling

DPF-Pheno Meeting 2024, May 13-17, Pitt

Ariel Edery (Bishop's University) Two different types of series expansions valid 9/28

Case: $\lambda = 0.1$: intermediate value

Converges relatively quickly to the exact value (below 1% error at n = 16).

	λ=0.1		% es	ror								
	Exact value is I= 1.	6740859	120	F								
n	F ₂ (n)	% error										
0	3.2236737	92.5	100	F								
4	3.6983551	121		•								
8	2.4374890	45.6	80	F								
12	1.8032981	7.72		E								
16	1.6864361	0.738	60	F								
20	1.6748432	4.52×10 ⁻²		E								
24	1.6741182	1.93×10 ⁻³	40	E								
28	1.6740869	5.79×10 ⁻⁴										
32	1.6740859	0	20	F								
36	1.6740859	0										
40	1.6740859	0	0	ŀ					•		•	
44	1.6740859	0	-	0	 10		20	 		 40	<u> </u>	12

DPF-Pheno Meeting 2024, May 13-17, Pitt

Ariel Edery (Bishop's University) Two different types of series expansions valid 10/28

Case: $\lambda = 1.0$: strong coupling

Converges very quickly at strong coupling to the exact value (at n = 4 the error is already less than 1%) \Rightarrow very useful series to use at strong coupling

	λ=1.0												
	Exact value is I= 1.	3684269											
n	F ₂ (n)	% error											
0	1.8128050	32.5	% em	x.									
1	1.2000966	12.3		•									
2	1.4266972	4.26	30 -										
3	1.3501087	1.34	25										
4	1.3737129	0.386	-										
5	1.3670114	0.103	20										
6	1.3687817	2.59×10 ⁻²]										
7	1.3683429	6.14×10 ⁻³	15										
8	1.3684457	1.37×10 ⁻³											
9	1.3684228	3.00×10 ⁻⁴	10										
10	1.3684277	5.16×10 ⁻⁵	5										
11	1.3684267	2.19×10 ⁻⁵											
12	1.3684269	0	0			•		•					
13	1.3684269	0] [
14	1.3684269	0	+	• • • •	2		4		6	 <u>ب</u> ب	10	 12	 -

Why does the first series $F_1(n)$, obtained by expanding the quartic term, diverge when the original integral is finite?

The reason is that the integrand $e^{-ax^2-\lambda x^4}$ in the limit as $x \to \infty$ is dominated by the quartic part λx^4 but the power series expansion of $e^{-\lambda x^4}$ up to any finite order *n* diverges in the limit as $x \to \infty$.

To capture the asymptotics of the quartic part properly, one must integrate x to a finite value β instead of infinity and then sum the series.

In particular, $\lim_{n\to\infty} \int_{-\beta}^{\beta} e^{-ax^2} (\lambda x^4)^n / n!$ tends to zero instead of infinity for any finite β .

One obtains the resulting series $S(n, \beta)$ in powers of λ which converges absolutely for any arbitrarily large value of β .

The series $S(n, \beta)$ and the incomplete Gamma function

Expanding the quartic term of the original integral I but integrating to finite β yields the following series in powers of the coupling λ :

$$S(n,\beta) = \int_{-\beta}^{\beta} dx \, e^{-ax^2} \sum_{j=0}^{n} \frac{(-\lambda \, x^4)^j}{j!} = \sum_{j=0}^{n} \frac{(-\lambda)^j}{j!} \int_{-\beta}^{\beta} dx \, e^{-ax^2} \, x^{4j}$$
$$= \sum_{j=0}^{n} \frac{(-\lambda)^j}{j!} \, a^{-2j-\frac{1}{2}} \, \gamma(2j+\frac{1}{2}, \, a\beta^2)$$

where the incomplete gamma function $\gamma(z, \alpha)$ is defined as

$$\gamma(z,\alpha) = \int_0^\alpha e^{-t} t^{z-1} dt.$$
 (1)

DPF-Pheno Meeting 2024, May 13-17, Pitt

The series $S(n, \beta)$ is an absolutely convergent series for any finite β and valid at weak and strong coupling λ .

Table of values of $S(n, \beta)$ for different λ

$\lambda = 0.01$ (exact value=1.7596991)								
n	$S(n, \beta = 1)$	$S(n, \beta = 2)$	$S(n, \beta = 3)$	$S(n, \beta = 4)$				
1	1.4916429	1.7529462	1.7591604	1.7591605				
2	1.4916478	1.7532172	1.7597216	1.7597419				
3	1.4916478	1.7532097	1.7596811	1.7596941				
4	1.4916478	1.7532099	1.7596847	1.7596999				
5	1.4916478	1.7532099	1.7596844	1.7596990				
6	1.4916478	1.7532099	1.7596844	1.7596991				
7	1.4916478	1.7532099	1.7596844	1.7596991				
8	1.4916478	1.7532099	1.7596844	1.7596991				

$\lambda = 0.1$ (exact value=1.6740859)									
n	$S(n, \beta = 1)$	$S(n, \beta = 2)$	$S(n, \beta = 3)$	$S(n, \beta = 4)$					
10	1.4740801	1.6731653	1.6781192,	3.2144919					
20	1.4740801	1.6731653	1.6740878	59.452736					
30	1.4740801	1.6731653	1.6740859	31.420652					
40	1.4740801	1.6731653	1.6740859	2.3645137					
50	1.4740801	1.6731653	1.6740859	1.6755770					
60	1.4740801	1.6731653	1.6740859	1.6740863					
70	1.4740801	1.6731653	1.6740859	1.6740859					
80	1.4740801	1.6731653	1.6740859	1.6740859					
90	1.4740801	1.6731653	1.6740859	1.6740859					

$\lambda = 1$ (evart value=1 3684269)										
n	$S(n, \beta = 1)$	$S(n, \beta = 2)$	$S(n, \beta = 3)$	$S(n, \beta = 4)$						
20	1.3336109	212.23528	5.5923449×10^{14}	9.9289902 × 10 ²¹						
40	1.3336109	1.3686641	9.1530933 × 10 ²²	1.5667467×10^{40}						
60	1.3336109	1.3684269	7.3181151 × 10 ²⁶	1.3017096×10^{54}						
80	1.3336109	1.3684269	8.1171151 × 10 ²⁷	1.5057863×10^{65}						
100	1.3336109	1.3684269	6.4811079 × 10 ²⁶	1.2481108×10^{74}						
200	1.3336109	1.3684269	3.0781473	3.6929318×10^{97}						
300	1.3336109	1.3684269	1.3684269	3.4250715×10^{98}						
400	1.3336109	1.3684269	1.3684269	6.8956011 × 10 ⁸⁴						
500	1.3336109	1.3684269	1.3684269	1.6689893×10^{60}						
600	1.3336109	1.3684269	1.3684269	7.8776498 × 10 ²⁶						
700	1.3336109	1.3684269	1.3684269	1.3684269						
800	1.3336109	1.3684269	1.3684269	1.3684269						
1000	1.3336109	1.3684269	1.3684269	1.3684269						

DPF-Pheno Meeting 2024, May 13-17, Pitt

Ariel Edery (Bishop's University)

Two different types of series expansions valid 14/28

Properties of $S(n, \beta)$

- The series converged to the correct value (to eight digit accuracy) for all three values of λ: at weak coupling λ = 0.01, at intermediate coupling λ = 0.1 and at strong coupling λ = 1.
- The series S(n, β) has a remarkable property: it is an expansion in powers of λ but it is an absolutely convergent series valid at both strong and weak coupling λ.
- The value of the integral limit β required for convergence was very low. With β ≤ 4, convergence up to eight digit accuracy was reached for all three values of λ.

 \Rightarrow For practical calculations, small β suffices. The limit $\beta \to \infty$ is not required.

Thank you

DPF-Pheno Meeting 2024, May 13-17, Pitt

Ariel Edery (Bishop's University) Two different types of series expansions valid 16/2

The Euclidean path integral for the quartic anharmonic oscillator with source term J is given by

$$\begin{aligned} \mathcal{K}_{E} &= \int \mathcal{D}x(\tau) \, e^{-S_{E}/\hbar} \\ &= \int \mathcal{D}x(\tau) \exp\left[\frac{-1}{\hbar} \int_{\tau_{a}}^{\tau_{b}} \left(\frac{1}{2} \, m \dot{x}^{2} + \frac{1}{2} \, m \, \omega^{2} \, x^{2} + \lambda \, x^{4} - J(\tau) \, x\right) \, d\tau \,\right] \end{aligned}$$

Expanding the quadratic term we obtain

$$\begin{split} k_{E} &= \int \mathcal{D}x(\tau) \, e^{\frac{1}{\hbar} \int_{\tau_{a}}^{\tau_{b}} \left(-\lambda \, x^{4} + J(\tau) \, x \right) \, d\tau} \\ & \left(1 - \frac{1}{\hbar} \int_{\tau_{a}}^{\tau_{b}} \left(\frac{1}{2} \, m \dot{x}^{2} + \frac{1}{2} \, m \, \omega^{2} \, x^{2} \right) d\tau \\ & + \frac{1}{\hbar^{2}} \, \frac{1}{2!} \left(\int_{\tau_{a}}^{\tau_{b}} \left(\frac{1}{2} \, m \dot{x}^{2} + \frac{1}{2} \, m \, \omega^{2} \, x^{2} \right) \, d\tau \right)^{2} + \dots \right). \end{split}$$

DPF-Pheno Meeting 2024, May 13-17, Pitt

Ariel Edery (Bishop's University) Two different types of series expansions valid 18/28

Discretized path integral

We divide the time interval $\tau_b - \tau_a$ into N segments. This yields a discretized path integral over N - 1 variables $x_i = x(\tau_i)$:

$$\begin{split} \mathcal{K}_{E} &= \left(\frac{m}{2 \,\pi \,\epsilon \,\hbar}\right)^{N/2} \int_{-\infty}^{\infty} \,dx_{1} \,dx_{2}...dx_{N-1} \,\exp\left(-\frac{\lambda \,\epsilon}{\hbar} \sum_{i=1}^{N-1} x_{i}^{4} + \vec{J} \cdot \vec{x}\right) \\ &\left(1 - \frac{m}{2 \,\epsilon \,\hbar} \Big((2 + \omega^{2} \,\epsilon^{2}) \sum_{i=1}^{N-1} x_{i}^{2} - 2 \sum_{i=2}^{N-1} x_{i} x_{i-1}\Big) \right. \\ &+ \Big[-\frac{m}{2 \,\epsilon \,\hbar} \Big((2 + \omega^{2} \,\epsilon^{2}) \sum_{i=1}^{N-1} x_{i}^{2} - 2 \sum_{i=2}^{N-1} x_{i} x_{i-1}\Big)\Big]^{2} \frac{1}{2!} + ...\Big) \,. \end{split}$$

where $\epsilon = (\tau_b - \tau_a)/N$.

Generating functional

We define the generating functional

$$Z[\vec{J}] = \int_{-\infty}^{\infty} \exp\left(-\frac{\lambda \epsilon}{\hbar} \sum_{i=1}^{N-1} x_i^4 + \vec{J} \cdot \vec{x}\right) dx_1 dx_2 \dots dx_{N-1}$$

=
$$\int_{-\infty}^{\infty} dx_1 \exp\left(-\frac{\lambda \epsilon}{\hbar} x_1^4 + J_1 x_1\right) \int_{-\infty}^{\infty} dx_2 \exp\left(-\frac{\lambda \epsilon}{\hbar} x_2^4 + J_2 x_2\right)$$

$$\dots \int_{-\infty}^{\infty} dx_{N-1} \exp\left(-\frac{\lambda \epsilon}{\hbar} x_{N-1}^4 + J_{N-1} x_{N-1}\right)$$

=
$$\prod_{i=1}^{N-1} I[J_i]$$

where $I[J_i]$ is a one-dimensional integral which can be expressed in terms of generalized hypergeometric functions.

Generalized hypergeometric functions instead of Gaussians

$$I[J_i] = \int_{-\infty}^{\infty} dx_i \exp\left(-\frac{\lambda \epsilon}{\hbar} x_i^4 + J_i x_i\right) = 2\Gamma\left(\frac{5}{4}\right) \left(\frac{\hbar}{\epsilon \lambda}\right)^{1/4} {}_0F_2\left(;\frac{1}{2},\frac{3}{4};\frac{J_i^4 \hbar}{256 \epsilon \lambda}\right) + \frac{1}{4}\Gamma\left(\frac{3}{4}\right) \left(\frac{\hbar}{\epsilon \lambda}\right)^{3/4} {}_0F_2\left(;\frac{5}{4},\frac{3}{2};\frac{J_i^4 \hbar}{256 \epsilon \lambda}\right) J_i^2.$$

where $_{0}F_{2}\left(;\frac{1}{2},\frac{3}{4};\frac{J_{i}^{4}\hbar}{256\epsilon\lambda}\right)$ and $_{0}F_{2}\left(;\frac{5}{4},\frac{3}{2};\frac{J_{i}^{4}\hbar}{256\epsilon\lambda}\right)$ are generalized hypergoemetric functions $_{p}F_{q}(a;b;z)$.

Since ${}_{p}F_{q}(a; b; 0) = 1$, it follows that

$$I[0] = 2\Gamma\left(\frac{5}{4}\right) \left(\frac{\hbar}{\epsilon\lambda}\right)^{1/4}$$
$$Z[0] = I[0]^{N-1} = \left[2\Gamma\left(\frac{5}{4}\right) \left(\frac{\hbar}{\epsilon\lambda}\right)^{1/4}\right]^{N-1}$$

DPF-Pheno Meeting 2024, May 13-17, Pitt

Note the inverse powers of λ .

Ariel Edery (Bishop's University) Two different types of series expansions valid 21/28

Series via functional derivatives of generating functional

A functional derivative with respect to J_i of $Z[\vec{J}]$ brings down a factor of x_i . We can therefore express the series as

$$\begin{aligned} \kappa_{E} &= C \sum_{n=0}^{\infty} \frac{1}{n!} \, \hat{Q}^{n} \, Z[\vec{J}] \, \Big|_{\vec{J}=0} \\ &= C \Big[Z[0] + \hat{Q} \, Z[\vec{J}] \, \Big|_{\vec{J}=0} + \frac{1}{2!} \, \hat{Q}^{2} \, Z[\vec{J}] \, \Big|_{\vec{J}=0} + \dots \Big] \end{aligned}$$

where the operator \hat{Q} is given by

$$\hat{Q} = -\frac{m}{2\epsilon\hbar} \left((2+\omega^2\epsilon^2) \sum_{i=1}^{N-1} \left(\frac{\delta}{\delta J_i}\right)^2 - 2\sum_{i=2}^{N-1} \frac{\delta}{\delta J_i} \frac{\delta}{\delta J_{i-1}} \right)$$

and the prefactor C is

$$C = \left(\frac{m}{2\,\pi\,\epsilon\,\hbar}\right)^{N/2}$$

DPF-Pheno Meeting 2024, May 13-17, P

Ariel Edery (Bishop's University) Two different types of series expansions valid 22/28

 $Z[\vec{J}]$ is a product of the $I[J_i]$ s. We therefore need to determine the functional derivatives of $I[J_i]$. After J_i is set to zero, only even derivatives survive and this is given by the simple expression

$$\left(\frac{\delta}{\delta J_i}\right)^{2n} I[J_i] \Big|_{J_i=0} = \int_{-\infty}^{\infty} dx_i \exp\left(-\frac{\lambda \epsilon}{\hbar} x_i^4\right) x_i^{2n}$$
$$= \frac{1}{2} \Gamma\left(\frac{2n+1}{4}\right) \left(\frac{\hbar}{\epsilon \lambda}\right)^{\frac{2n+1}{4}}$$

where *n* is any non-negative integer. When n = 0 we recover the expression for I[0]. The above result is central to evaluating the series for K_E .

First order contribution

The first order (n = 1) contribution to the series is given by

$$\begin{split} \hat{Q} Z[\vec{J}] \Big|_{\vec{J}=0} &= -\frac{m}{2 \epsilon \hbar} \Big((2 + \omega^2 \epsilon^2) \sum_{i=1}^{N-1} \Big(\frac{\delta}{\delta J_i} \Big)^2 - 2 \sum_{i=2}^{N-1} \frac{\delta}{\delta J_i} \frac{\delta}{\delta J_{i-1}} \Big) \prod_{i=1}^{N-1} I[J_i] \Big|_{\vec{J}=0} \\ &= -\frac{m}{2 \epsilon \hbar} \left(2 + \omega^2 \epsilon^2 \right) \sum_{i=1}^{N-1} \Big(\frac{\delta}{\delta J_i} \Big)^2 \prod_{i=1}^{N-1} I[J_i] \Big|_{\vec{J}=0} \\ &= -\frac{m}{2 \epsilon \hbar} \left(2 + \omega^2 \epsilon^2 \right) \sum_{i=1}^{N-1} I[J_1] I[J_2] ... \Big(\frac{\delta}{\delta J_i} \Big)^2 I[J_i] ... I[J_{N-1}] \Big|_{\vec{J}=0} \\ &= -\frac{m}{2 \epsilon \hbar} \left(2 + \omega^2 \epsilon^2 \right) (N-1) I[0]^{N-2} \frac{1}{2} \Gamma \Big(\frac{3}{4} \Big) \left(\frac{\hbar}{\epsilon \lambda} \Big)^{\frac{3}{4}} \\ &= -Z[0] \left(N-1 \right) \frac{1}{\lambda^{1/2}} \frac{\Gamma \Big(\frac{3}{4} \Big)}{\Gamma \Big(\frac{5}{4} \Big)} \left(2 + \omega^2 \epsilon^2 \right) \frac{m}{8 \hbar^{1/2} \epsilon^{3/2}} \,. \end{split}$$

The series up to first order (subscript (1)) is given by the analytical formula

$$\mathcal{K}_{E_{(1)}} = CZ[0] \left(1 - \frac{1}{\lambda^{1/2}} \left(N - 1 \right) \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{5}{4})} \left(2 + \omega^2 \, \epsilon^2 \right) \frac{m}{8 \, \hbar^{1/2} \, \epsilon^{3/2}} \right).$$

The expression is a function of N, the coupling constant λ and the parameters ω and m as well as the constant \hbar . It depends also on the time interval \mathcal{T} via $\epsilon = \mathcal{T}/N$. Having an expression as a function of N is very useful since numerically, N is the number of integrations required in the original path integral and this can become computationally intensive in the continuum limit where N is large and formally infinite.

First order analytical formula matches numerical integration

As a simple check on the first order analytical formula, we performed a first order numerical integration of the series for the case N = 4 which involves N - 1 = 3 integrals. We used the following numerical values for the parameters: $m = \hbar = \omega = T = 1$. Hence $\epsilon = T/N = 1/4$. The numerical value of λ was not specified. The analytical formula and first order numerical integration *matched* and gave the following result:

$$\mathcal{K}_{\mathcal{E}_{(1)}} = \frac{64\sqrt{2}\,\Gamma\left(\frac{5}{4}\right)^3}{\pi^2\,\lambda^{3/4}} - \frac{99\,\Gamma\left(\frac{1}{4}\right)}{2\,\pi\,\lambda^{5/4}} \qquad \text{for } N = 4 \text{ and } m = \hbar = \omega = \mathcal{T} = 1.$$

The inverse powers of λ above illustrates again that this series is outside the usual perturbative regime and is well suited to the strong coupling non-perturbative regime.

Circumventing Dyson's argument on asymptotic series

- Dyson would argue that a perturbative series expansion about $\lambda = 0$ in powers of λ should yield an asymptotic series. If it were absolutely convergent then the series would also be convergent for negative λ assuming its absolute value is sufficiently small.
- The original integral diverges for negative λ which implies the series $F_1(n)$ with positive λ must be an asymptotic series.
- In quantum mechanics (QM), Dyson's argument would be that the potential $V(x) = \lambda x^4 + a x^2$ with negative λ exhibits tunneling and hence an instability so the series must diverge.
- How did we circumvent Dyson's argument with our series S(n, β)? The answer is that x ranges between the finite values of -β and β so that our original integral with those limits is finite when λ is negative.
- In the QM case, the particle is confined between $-\beta$ and β and this requires placing infinite walls at $x = \pm \beta$ in the potential V(x). The walls prevent tunneling from occuring.

Ariel Edery (Bishop's University) Two different types of series expansions valid 28/28