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Perturbative expansion and asymptotic series

@ The path integral in quantum mechanics and quantum field theory is
typically expanded perturbatively in powers of of the coupling. This is
well-known to yield an asymptotic series.

@ An asymptotic series can still be useful at weak coupling but fails
completely at strong coupling.

@ We study two different types of series expansions: the first is the
usual one in powers of the coupling but the second is a series
expansion of the quadratic part (the interaction is left alone).

@ The first is an asymptotic series but the second is an absolutely
convergent series that is valid at strong coupling.

@ We revisit the first series, identify why it diverges and fix the problem
to obtain an absolutely convergent series.
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The prototypical example: a one-dimensional integral

In non-perturbative studies, the prototypical example used to illustrate
how perturbative expansions yield an asymptotic series is the following
one-dimensional integral:

| = / e—axz—)\x4 dx

—00

where a and )\ are positive real constants. The above integral has an exact
analytical expression given by

1 2 1 &
/= 5 esx \/EBesselK [4, ;)\]

where BesselK][n, z] is the modified Bessel function of the second kind.
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First series

Expansion of quartic term in powers of coupling A

A series expansion in powers of A\ of the quartic term to order n is given by

aNi

Fi(n) = /_Z dxe 2% Z M = ZO (_JI)\)J /_O; dxe 2% x4
=

5!

-> Y <%)ja’”2 r1/2 +2j].

This is an asymptotic series since lim ()" [1/2+2n]/n! — oo.
n—oo @

We plot Fi(n) for three values of A: 0.01, 0.1 and 1.0 (setting a = 1).

For each A, we present a table comparing F1(n) to the exact analytical
value. All values are quoted to eight digit accuracy.
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Case A = 0.01: weak coupling

Plateaus to the correct value before diverging = reliable perturbative

expansion at weak coupling

A=0.01
Exact value is I= 1.7596991

n Fi(n) % error

0 1.7724539 0.73

1 1.7591604 0.031

2 1.7597420 2.5x10°%

3 1.7596941 2.9x10*

4 1.7596999 | 4.0x 10°

5 1.7596990 | 8.2x10°
6-51 1.7596991 0

60 1.7597507 | 2.9x 103
67 1.7254544 1.95
70 2.4570073 40

80 39560.681 > 100
90 ~10% > 100
200 ~10% > 100
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Case A = 0.1: intermediate value

No plateau region but dips close to correct value early on before diverging
= less reliable

A=0.1
Exact value is | = 1.6740859

n Fi(n) % error % amor

0 1.7724539 5.88 b :

1 1.6395198 2.06 -

2 1.6976785 1.41 r

3 1.6496976 1.46 ok

4 1.7081743 2.04 b

5 1.6137344 3.61 ne

6 1.8037946 7.75 2r

7 1.3456137 19.6 3

8 2.6328157 57.3 ElN .

9 -1.4969574 189 F

10 13.401199 700 wr .

11 -46.293005 >1000 : .

12 216.73458 >1000 of oo

13 -1047.3153 >1000 - TR . TR
[/} 2 4 6 g
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Case A = 1: strong coupling

Diverges early on (never close to correct value) = completely unreliable

% emor

A=1.0 40000 .
Exact value is | = 1.3684269.

n Fi(n) % error

0 1.7724539 295 30000 -

1 0.44311346 67.6

2 6.2589777 357

3 -41.721902 2.95 x10° oeer

4 543.04507 3.96 x10*

5 -8900.9415 6.50x10° —

6 181159.29 1.32x107

7 -4.4006498x10° 3.22x108

8 1.2431955x10°8 9.08x10° oL . . .

9 -4.0054535x10° 2.92x10% L L L L L 55
[} 1 2 3 4

DPF-Pheno Meeting 2024, May 13-17, Pitt

Ariel Edery (Bishop's University) Two different types of series expansions valid 7 /28



Second series

Expansion of the quadratic term

We perform a series expansion of the quadratic term in the original
integral to order n. This yields

-3 5 '(‘;>’/ 2;1/4 riL/a+j/2].

Note that this a series expansion in powers of the inverse coupling .

r[1/a+(n+1)/2]

N D) T(L/An2] 0.

The series is absolutely convergent (ratio test): I|m

Converges faster at strong coupling!
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Case: A = 0.01: weak coupling

Converges at weak coupling to the exact value but very slowly (at order
n = 159!) = not convenient to use at weak coupling

A=0.01
Exact value is 1= 1.7596991 s

n Fa(n) % error - -

0 5.7325926 225 o HiH

20 2.5103285x10" 1.43x10° Jn

40 2.5963201x10° 1.48x10™ Lswioll [ &

60 1.8581749x10° 1.06x10' .

80 4.9648270x107 2.82x10° . .
100 112774.14 6.41x10° Lx1ott | : :
120 37.346246 2.022x10° .
140 1.7618630 0.123 N 1‘
159 1.7596991 0 510t : -
180 1.7596991 0 : E
200 1.7596991 0 i \
220 1.7596991 0 o . .
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Case: A = 0.1: intermediate value

Converges relatively quickly to the exact value (below 1% error at n = 16).

A=0.1 % error
Exactvalueisl= 1.6740859 120} .
n Fa(n) % error
0 3.2236737 92.5 100
4 3.6983551 121 :
8 2.4374890 45.6 80|
12 1.8032981 7.72
16 1.6864361 0.738 80
20 1.6748432 4.,52x107?
24 1.6741182 1.93x10° AF
28 1.6740869 5.79x10*
32 1.6740859 0 wE
36 1.6740859 0 .
40 1.6740859 0 or = . . . .
44 1.6740859 0 _" 1:7 }; _,I,. 4: n
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Case: A = 1.0: strong coupling

Converges very quickly at strong coupling to the exact value (at n = 4 the
error is already less than 1%) = very useful series to use at strong
coupling

A=1.0

Exact value is I= 13684269
n F2(n) % error
0 1.8128050 325 % arvor
1 1.2000966 123 N
2 1.4266972 4.26 *r
3 1.3501087 134 Wk
4 1.3737129 0.386
5 1.3670114 0.103 nf
6 1.3687817 2.59x10?
7 1.3683429 6.14x10° "
8 1.3684457 1.37x10°
9 1.3684228 3.00x10* wr
10 1.3684277 5.16x10° Sf
11 1.3684267 2.19x10°
12 1.3684269 0 of
13 1.3684269 0
14 1.3684269 0 0 p 7 o = o g
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Revisiting the first series F1(n)

Why does the first series F1(n), obtained by expanding the quartic term,

diverge when the original integral is finite?

The reason is that the integrand e~ =2 in the limit as x — oo is
. . . . 4

dominated by the quartic part A x* but the power series expansion of e~ **

up to any finite order n diverges in the limit as x — oo.

To capture the asymptotics of the quartic part properly, one must
integrate x to a finite value (8 instead of infinity and then sum the series.

In particular, lim f_ﬂﬁ e=3¥(Ax*)"/nl tends to zero instead of infinity for
n—o0
any finite 3.

One obtains the resulting series S(n, 3) in powers of A which converges
absolultely for any arbitrarily large value of 5.
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The series S(n, 5) and the incomplete Gamma function

Expanding the quartic term of the original integral / but integrating to
finite 3 yields the following series in powers of the coupling A:

8 oy AN N \\j B .
S(n,B) = / dxe % Z w = Z ﬂ dxe 3% 5
-8 = I = /-8

- ()
_J; .

where the incomplete gamma function y(z, «) is defined as

J .
a ¥ y(2j+ 1, ap?)

Yz, o) = /oa et ldt. (1)

The series S(n, 3) is an absolutely convergent series for any finite 5 and
valid at weak and strong coupling \.
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Table of values of S(n, ) for different A

A=0.01 A=0.1
(exact value=1.7596991) (exact value=1.6740859)

n | SmB=1 | SmB=2) | SMB=3) | SMBL=4) n SmB=1) | SmB=2) | SMB=3) | SmB=4)
1 | 14916429 | 1.7529462 | 1.7591604 | 1.7591605 10 1.4740801 1.6731653 | 1.6781192, | 3.2144919
2 1.4916478 1.7532172 1.7597216 | 1.7597419 20 1.4740801 1.6731653 | 1.6740878 59.452736
3 | 14916478 | 17532097 | 1.7596811 | 17596941 30 1.4740801 1.6731653 | 1.6740859 31420652
4 | 14916478 17532099 17596847 | 1.7596999 40 | 1.4740801 1.6731653 | 1.6740859 2.3645137
5 1.4916478 1.7532099 1.7596844 | 17596990 50 1.4740801 1.6731653 1.6740859 1.6755770
6 | 1.4916478 1.7532099 1.7596844 1.7596991 60 1.4740801 1.6731653 1.6740859 1.6740863
7 | 14916478 1.7532099 1.7596844 1.7596991 70 1.4740801 1.6731653 1.6740859 1.6740859
8 | 1.4916478 1.7532099 17596844 | 1.7596991 80 1.4740801 | 1.6731653 | 1.6740859 1.6740859

90 1.4740801 1.6731653 1.6740859 1.6740859

(exact value=1.3684269)

n Snp=1) S(n,p=2) S(n,p=3) Sn,p=4)

20 | 1.3336109 | 212.23528 5.5923449 x 10™* 9.9289902 x 102
40 1.3336109 | 13686641 9.1530933 x 10?2 1.5667467 x 10*°
60 1.3336109 | 1.3684269 | 73181151 x 10%° 1.3017096 x 105
80 1.3336109 | 1.3684269 | 8.1171151 x 10 1.5057863 x 105
100 [ 1.3336109 | 1.3684269 6.4811079 x 10%° 1.2481108 x 107*
200 | 1.3336109 | 1.3684269 3.0781473 3.6929318 x 10%7
300 | 1.3336109 | 1.3684269 1.3684269 3.4250715 x 10%
400 | 1.3336109 | 1.3684269 1.3684269 6.8956011 x 10%*
500 | 1.3336109 | 1.3684269 1.3684269 1.6689893 x 10°°
600 | 1.3336109 | 1.3684269 1.3684269 7.8776498 x 102
700 | 1.3336109 | 1.3684269 1.3684269 1.3684269
800 | 1.3336109 | 1.3684269 1.3684269 1.3684269
1000 | 1.3336109 | 1.3684269 1.3684269 1.3684269
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Properties of S(n, 3)

@ The series converged to the correct value (to eight digit accuracy) for
all three values of \: at weak coupling A = 0.01, at intermediate
coupling A = 0.1 and at strong coupling A = 1.

@ The series S(n, 3) has a remarkable property: it is an expansion in
powers of A but it is an absolutely convergent series valid at both
strong and weak coupling .

@ The value of the integral limit 3 required for convergence was very
low. With 8 < 4, convergence up to eight digit accuracy was reached
for all three values of A.

= For practical calculations, small § suffices. The limit 8 — oo
is not required.
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Thank you
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Quantum Mechanical Path Integral:

quartic anharmonic oscillator

The Euclidean path integral for the quartic anharmonic oscillator with
source term J is given by

Ke = / Dx(t) e /"
Tb

:/DX(T)exp[_hl/ (%mkz+%mw2x2+/\x4—J(7-)x> dT},
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Analog of second series: expanding quadratic term

Expanding the quadratic term we obtain

ke = /DX(T) et [ (=Ax+dr)x) or
(1—/ G mw2x2)d7

h2 2!</Tab< mx2+;mw x2>d7'>2+...>.
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Discretized path integral

We divide the time interval 75, — 7, into N segments. This yields a
discretized path integral over N — 1 variables x; = x(7;):

m N/2 Ae PR,
KE:(27T6h / dxq dxo...dxpn_ 1exp( ;X,-—{—J-x)

(1—M<(2+w Nzlx,z—zzx,x,_)
i=1 =2
N—-1 5
) S IS )

=2

where € = (1 — 75)/N.
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Generating functional

We define the generating functional

& Ne N7t
201= [ e (=553 A+ T05) ova d b
o0 i=1

:/OO dxq exp(—);;x‘{+J1x1)/_

—00

A
dxp exp ( — %xg + J2x2)

o0

o0 Ae
/ dxn_1 exp ( - fX?V—l + JIn-1 XN71>

N—-1
= H 11J]

where [[J;] is a one-dimensional integral which can be expressed in terms
of generalized hypergeometric functions.
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Generalized hypergeometric functions instead of Gaussians

e XNe 4\ oS\ hNYA (13 Jih
I[J,] —/ dX, exp<— fxi +J,X,> = 2F(Z) <a) 0F2 (v 571' 2566)\)

1_,3,/ h\3/4 53 Jth »
UG <'4’2' z5m> I

where gF; < 5 2' 2;65)\) and oF; ( 23 2565)\> are generalized
hypergoemetric functions ,F4(a; b; z).

Since pF4(a; b;0) = 1, it follows that

0] :2r(§) (3)1/4
A )1/4}N—1‘

z[o] = 1]V = [2r( ) (=

€

Note the inverse powers of \.
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Series via functional derivatives of generating functional

A functional derivative with respect to J; of Z[j] brings down a factor of
x;. We can therefore express the series as

Ke=¢C Z—:o % an[j] ‘7:0

= c[z101+ @211, + % & z[]

ﬁ ]
J= J=0

where the operator Qis given by

it (L) S ) DU,
T 2en woe 5J; C 5 601

i=1 =

and the prefactor Cis

€= (2:671)1\//2'
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Evaluating the functional derivatives

Z[J] is a product of the /[J;]s. We therefore need to determine the
functional derivatives of /[J;]. After J; is set to zero, only even derivatives
survive and this is given by the simple expression

((&)2"1[Ji] ‘J;:o = /_00 dx; exp ( - %xf‘) x2n

oo
h 2n+1

1_.2n+1 2
- ()
2 ( 4 ) EA
where n is any non-negative integer. When n = 0 we recover the expression
for 1[0]. The above result is central to evaluating the series for K.
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First order contribution

The first order (n = 1) contribution to the series is given by

=5, h(2+w262)ZI[J1]/[J2] ( )/[J]
3

1 B3
2+ N=1) 101" 25T (3) ()

3
:—Z[O](N—l)# [Eii( +w? )ﬁ.

~5ep (
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Series up to first order

The series up to first order (subscript (1)) is given by the analytical formula

r(3)
()

The expression is a function of N, the coupling constant A and the
parameters w and m as well as the constant A. It depends also on the time
interval 7 via e = 7 /N. Having an expression as a function of N is very
useful since numerically, N is the number of integrations required in the
original path integral and this can become computationally intensive in the
continuum limit where N is large and formally infinite.

Alw

(2 +w?e?)

1 m

Ao
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First order analytical formula matches numerical

integration

As a simple check on the first order analytical formula, we performed a
first order numerical integration of the series for the case N = 4 which
involves N — 1 = 3 integrals. We used the following numerical values for
the parameterss: m=h=w =7 =1. Hence e =T /N =1/4. The
numerical value of A was not specified. The analytical formula and first
order numerical integration matched and gave the following result:

6421 (2)° 99T (1)
Ke. = —

o 234 > \5/4 fo-rN=4and m=h=w=7T =1.

The inverse powers of A\ above illustrates again that this series is outside
the usual perturbative regime and is well suited to the strong coupling
non-perturbative regime.
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Circumventing Dyson's argument on asymptotic series

@ Dyson would argue that a perturbative series expansion about A =0
in powers of X should yield an asymptotic series. If it were absolutely
convergent then the series would also be convergent for negative A
assuming its absolute value is sufficiently small.

@ The original integral diverges for negative A which implies the series
F1(n) with positive A must be an asymptotic series.

@ In quantum mechanics (QM), Dyson'’s argument would be that the
potential V(x) = Ax* + ax® with negative )\ exhibits tunneling and
hence an instability so the series must diverge.

e How did we circumvent Dyson's argument with our series S(n, 3)?
The answer is that x ranges between the finite values of —3 and 5 so
that our original integral with those limits is finite when X is negative.

@ In the QM case, the particle is confined between —(3 and § and this
requires placing infinite walls at x = 40 in the potential V(x). The

walls prevent tunneling from occuring.
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