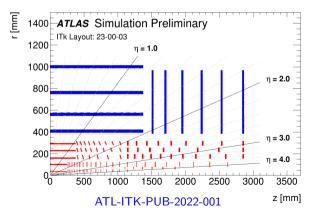
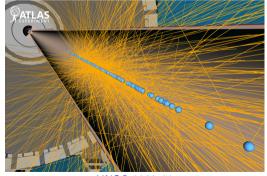
Event Filter Tracking in ATLAS for the HL-LHC

Ben Rosser

University of Chicago

May 15, 2024

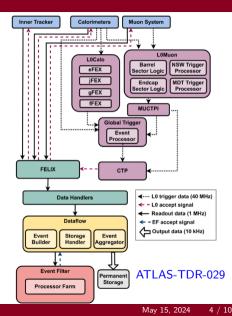




- Event Filter Tracking: ATLAS track trigger upgrade for HL-LHC:
 - Increase in luminosity by 4x to $\mu = 200$ (10x greater than original design).
 - ATLAS detector and readout electronics upgrades needed.
 - This project: design dedicated tracking coprocessor for Event Filter trigger.
- This talk:
 - Overview of EF Tracking and how it fits into ATLAS HL-LHC upgrade program.
 - Overview of possible FPGA-based solution for EF Tracking.
 - Discussion of pattern recognition and ambiguity resolution algorithms under study.
 - Outlook and path forward towards building this system.

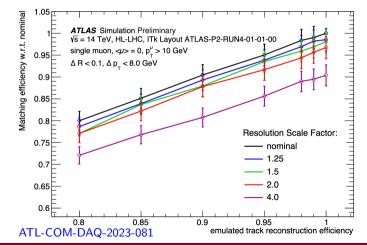
ATLAS Inner Tracker Upgrade

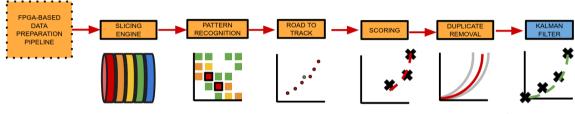
- For the HL-LHC: building new, all-silicon Inner Tracker (ITk):
 - Comprised of 2D pixels and 1D strips.
 - Extends tracking from $\eta = 2.4$ to $\eta = 4.0$; challenging high-pileup environment!



UNSG-2022-89

ATLAS Trigger Upgrade Plans

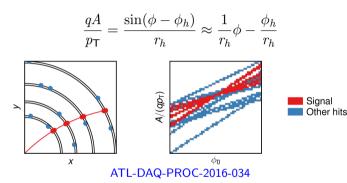

- Two-stage HL-LHC trigger:
 - $40 \text{ MHz} \rightarrow 1 \text{ MHz}$ Level 0 (hardware)
 - $1 \text{ MHz} \rightarrow 10 \text{ kHz}$ Event Filter (CPU)
 - 10x increase in readout rate.
- ITk data only used in the Event Filter:
 - 1 MHz tracking in regions of interest.
 - Reduced $150\,\rm KHz$ rate for "full scan" tracking.
- Offline algorithms could meet latency requirements:
 - CPU-only system estimated to need $1.9-2.3 \,\mathrm{MW}$.
 - Entire datacenter power budget: 2.5 MW!
 - Motivates compute accelerators: GPU, FPGA.


Event Filter Tracking

- EF Tracking project: new R&D effort started in 2021:
 - Studying wide range of tracking options on commodity hardware: CPUs, GPUs, and FPGAs.

- R&D will continue until 2025.
- Studies underway to determine performance requirements:
 - Example: tracking performance to reach **98%** muon trigger efficiency.
 - Other metrics: power, bandwidth, latency, maintainability, etc.
- Technology choice next year!

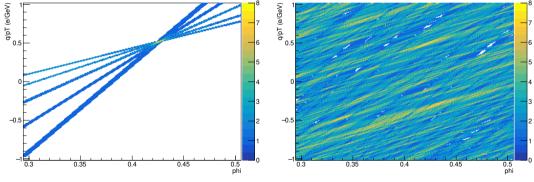
FPGA Tracking Pipeline


Figures: J. Oliver, UCI

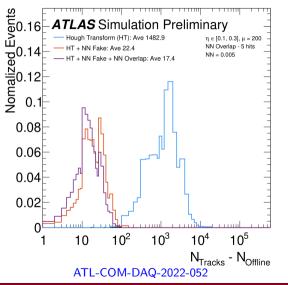
• Current status: designing complete **pipelines**. Example FPGA pipeline:

- Unpack raw data, perform pattern recognition, ambiguity resolution on board.
- Send tracks passing ambiguity resolution to CPU for high quality refit.
- Targeting Xilinx, initial estimates using Alveo U250: 0.6-0.7 MW (vs 1.8 MW for CPU-only!)

Pattern Recognition: Hough Transforms


- Fast image processing transform.
- Map hits (r_h, ϕ_h) into lines in track $(\phi, q/p_T)$, find intersections.
- Coarse estimate of track params.
- Combine **2D slices** to cover full detector volume.

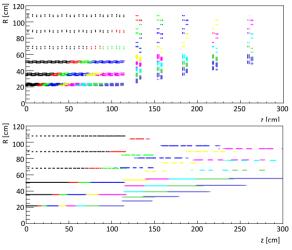
- Multiple versions of transform under study:
 - Baseline version uses four double-sided strip layers plus outermost pixel layer.
 - Track candidates must have at least 7/9 hits.


Need for Ambiguity Resolution

- Many fake tracks from Hough transform at $\mu = 200$:
 - Single muon track + O(1000) fakes in one $0.2 \times 0.2 \ \eta \times \phi$ slice!
 - O(100k) total; far too much data to pass to CPU for offline track fit.

ATLAS-TDR-029-ADD-1

Ideas for Ambiguity Resolution


- Score tracks with fast linear fit (χ²) or neural network: use to reject duplicates.
- Initial results: algorithms comparable:
 - Two orders of magnitude rejection.
 - Linear fit also reduces down to **15.1**~**32.1** tracks per region.
 - Further improvements possible with extra pattern filtering: can get as low as **3.9**.
 - Methods can also estimate **track params** for extension to inner layers.
- Optimization still ongoing!

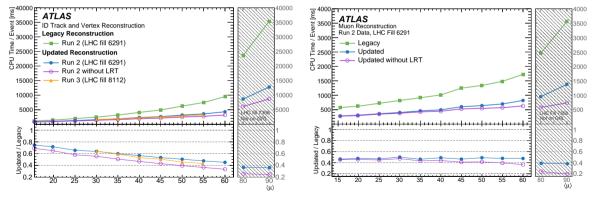
- Looking towards EF tracking technology choice next year:
 - Prototype firmware for these algorithms exist, simulation studies continuing.
 - Integration of firmware to create complete pipelines in progress.
 - Will compare different FPGA pipelines to each other and to GPU and CPU based solutions.
 - Lots of great track trigger R&D work even if these options not ultimately selected.
- Thanks for your attention!

Linear Fitting Challenges

- NN can learn ITk geometry; fit cannot.
- Many different fit constants needed:
 - Cover nonlinearities due to variations in detector geometry.
 - Up to ${\it O}(40{\rm k})$ in one 0.2×0.2 region.
- Solution: project physical hit positions onto idealized fixed-radius cylinders:
 - Idea from CMS, smooths nonlinearities.
 - Requires track q/p_{T} : take from Hough.
 - Perform fit using transformed coordinates (z', φ').
 - Uses one set of constants per region.

arXiv:1809.01467

- Resource usage and processing time estimates for Alveo U250 implementation.
- Two different versions of Hough algorithm with NN ambiguity resolution.
- Preliminary results, subject to change in complete FPGA pipeline!


	LUT (%)	flip-flop (FF) (%)	BRAM/	DSP (%)
Firmware Block	Logic Functions		URAM (%)	
PCIe	0.6	0.6	0.3	-
Clustering	$1\!-\!4$	0.14 - 0.51	1.3 - 5.4	-
Stub-Finding	0.2	0.05	0.1	-
Slicing Engine	0.1	0.07	13	-
Hough (2D, 0.2×0.2)	39-59	10-30	1-5	1.8-21
Hough (1D, 0.2×0.8)	12	7	27	1
Fake Rejection (NN)	8	1	0.02	29
Duplicate Removal	1	1	-	-
Track Fitting	~ 10		-	~ 10
Monitoring (IPbus)	~ 1		-	-
2nd-Stage Fitting	~ 10		~ 30	~ 15
Total	44 - 94	32-55	33-41	55 - 75

	Firmware Implementation & Scenario		
Per Event	Hough (2D)	Hough (1D)	
Loading Time (ms)	1.9-2.8	0.7	
Readout Time (ms)	2.7-3.4	1.3	
Total Time (ms)	max(loading, readout)		
iotai iiiie (iiis)	2.7-3.4	1.3	
Processing Rate (Hz)	294-534	741	
N _{accel}	374-680	270	

ATLAS-TDR-029-ADD-1 (Tables 2.8, 2.8)

Offline Tracking Performance

- Latest ATLAS track reconstruction time as function of pileup.
- Significant improvements from adoption of ACTS Common Tracking Software.

Comput Softw Big Sci 8, 9 (2024) (Tables 2.8, 2.8)

Ben Rosser (Chicago)

DPF 2024