Cosmological Stasis from Dynamical Scalars

Brooks Thomas

LAFAYETTE COLLEGE

Based on work done in collaboration with:

Keith R. Dienes, Fei Huang, Lucien Heurtier, and Timothy M. P. Tait [arXiv:2405.xxxxx]

DPF/PHENO, University of Pittsburgh, May 15th, 2024

• Cosmological stasis is a phenomenon in which the abundances of multiple cosmological energy components (matter, radiation, etc.) remain **effectively constant** over an extended period. [Dienes, Huang, Heurtier, Kim, Tait, BT '21]

- Cosmological stasis is a phenomenon in which the abundances of multiple cosmological energy components (matter, radiation, etc.) remain **effectively constant** over an extended period. [Dienes, Huang, Heurtier, Kim, Tait, BT '21]
- This phenomenon arises when source and sink tems in the Boltzmann equations for these components "pump" energy density from one component to another at a rate that compensates for Hubble expansion.

- Cosmological stasis is a phenomenon in which the abundances of multiple cosmological energy components (matter, radiation, etc.) remain **effectively constant** over an extended period. [Dienes, Huang, Heurtier, Kim, Tait, BT '21]
- This phenomenon arises when source and sink tems in the Boltzmann equations for these components "pump" energy density from one component to another at a rate that compensates for Hubble expansion.

- Cosmological stasis is a phenomenon in which the abundances of multiple cosmological energy components (matter, radiation, etc.) remain **effectively constant** over an extended period. [Dienes, Huang, Heurtier, Kim, Tait, BT '21]
- This phenomenon arises when source and sink tems in the Boltzmann equations for these components "pump" energy density from one component to another at a rate that compensates for Hubble expansion.

- Cosmological stasis is a phenomenon in which the abundances of multiple cosmological energy components (matter, radiation, etc.) remain **effectively constant** over an extended period. [Dienes, Huang, Heurtier, Kim, Tait, BT '21]
- This phenomenon arises when source and sink tems in the Boltzmann equations for these components "pump" energy density from one component to another at a rate that compensates for Hubble expansion.

- Cosmological stasis is a phenomenon in which the abundances of multiple cosmological energy components (matter, radiation, etc.) remain **effectively constant** over an extended period. [Dienes, Huang, Heurtier, Kim, Tait, BT '21]
- This phenomenon arises when source and sink tems in the Boltzmann equations for these components "pump" energy density from one component to another at a rate that compensates for Hubble expansion.

- Cosmological stasis is a phenomenon in which the abundances of multiple cosmological energy components (matter, radiation, etc.) remain **effectively constant** over an extended period. [Dienes, Huang, Heurtier, Kim, Tait, BT '21]
- This phenomenon arises when source and sink tems in the Boltzmann equations for these components "pump" energy density from one component to another at a rate that compensates for Hubble expansion.

• Pump terms with the right time-dependence for stasis emerge naturally in scenarios involving <u>towers of states</u> with broad spectra of masses, cosmological abundances, lifetimes, etc.

- Pump terms with the right time-dependence for stasis emerge naturally in scenarios involving **towers of states** with broad spectra of masses, cosmological abundances, lifetimes, etc.
- Such towers are a facet of numerous BSM-physics scenarios including...
 - String theory (string moduli, axions, etc.)
 - Theories with extra spacetime dimensions (KK towers)
 - Scenarios which lead to the production of primordial black holes with an extended mass spectrum (the black holes themselves)

- Pump terms with the right time-dependence for stasis emerge naturally in scenarios involving **towers of states** with broad spectra of masses, cosmological abundances, lifetimes, etc.
- Such towers are a facet of numerous BSM-physics scenarios including...
 - String theory (string moduli, axions, etc.)
 - Theories with extra spacetime dimensions (KK towers)
 - Scenarios which lead to the production of primordial black holes with an extended mass spectrum (the black holes themselves)
- When they do emerge, stasis is typically a **global attractor**: the universe will evolve toward stasis regardless of initial conditions.

- Pump terms with the right time-dependence for stasis emerge naturally in scenarios involving **towers of states** with broad spectra of masses, cosmological abundances, lifetimes, etc.
- Such towers are a facet of numerous BSM-physics scenarios including...
 - String theory (string moduli, axions, etc.)
 - Theories with extra spacetime dimensions (KK towers)
 - Scenarios which lead to the production of primordial black holes with an extended mass spectrum (the black holes themselves)
- When they do emerge, stasis is typically a **global attractor**: the universe will evolve toward stasis regardless of initial conditions.
- The modified cosmological histories associated with stasis can affect the evolution of <u>scalar and tensor perturbations</u>.

 Scalar fields whose zero-mode values are displaced (or misaligned) from their minima are a common feature of BSM scenarios.

- Scalar fields whose zero-mode values are displaced (or misaligned) from their minima are a common feature of BSM scenarios.
- Given this, the primary question on which I'll focus in this talk is the following:

Is it possible to achieve a prolonged epoch of cosmological stasis from a tower of such scalars?

- Scalar fields whose zero-mode values are displaced (or misaligned) from their minima are a common feature of BSM scenarios.
- Given this, the primary question on which I'll focus in this talk is the following:

Is it possible to achieve a prolonged epoch of cosmological stasis from a tower of such scalars?

• Such a stasis, as we'll see, would be characterized by an effective equation-of-state parameter between that of vacuum energy $(w_{\Lambda} = -1)$ and matter $(w_{\Lambda} = 0)$

- Scalar fields whose zero-mode values are displaced (or misaligned) from their minima are a common feature of BSM scenarios.
- Given this, the primary question on which I'll focus in this talk is the following:

Is it possible to achieve a prolonged epoch of cosmological stasis from a tower of such scalars?

- Such a stasis, as we'll see, would be characterized by an effective equation-of-state parameter between that of vacuum energy $(w_{\Lambda} = -1)$ and matter $(w_{\Lambda} = 0)$
- Moreover, stases involving dynamical scalars give rise to some
 <u>phenomena not seen in other realizations of stasis</u> which could potentially useful for addressing fundamenal questions in cosmology.

• To set the stage, let's recall how the homogeneous zero-mode of a **single scalar field** ϕ of mass m with a quadratic potential $V(\phi)$ evolves in a flat FRW universe.

• To set the stage, let's recall how the homogeneous zero-mode of a **single scalar field** ϕ of mass m with a quadratic potential $V(\phi)$ evolves in a flat FRW universe.

• To set the stage, let's recall how the homogeneous zero-mode of a **single scalar field** ϕ of mass m with a quadratic potential $V(\phi)$ evolves in a flat FRW universe.

• To set the stage, let's recall how the homogeneous zero-mode of a **single scalar field** ϕ of mass m with a quadratic potential $V(\phi)$ evolves in a flat FRW universe.

- To set the stage, let's recall how the homogeneous zero-mode of a **single scalar field** ϕ of mass m with a quadratic potential $V(\phi)$ evolves in a flat FRW universe.
- We'll focus on the case where at time $t^{(0)}$, this field is displaced from its potential minimum by $\phi^{(0)}$, but has negligible initial velocity $\dot{\phi}(t^{(0)}) \approx 0$.

- To set the stage, let's recall how the homogeneous zero-mode of a **single scalar field** ϕ of mass m with a quadratic potential $V(\phi)$ evolves in a flat FRW universe.
- We'll focus on the case where at time $t^{(0)}$, this field is displaced from its potential minimum by $\phi^{(0)}$, but has negligible initial velocity $\dot{\phi}(t^{(0)}) \approx 0$.
- We'll also assume that its energy density $\rho_{\phi} \ll \rho_{\text{crit}}$ is **subdominant** and has negligible impact on the Hubble parameter H.

- To set the stage, let's recall how the homogeneous zero-mode of a **single scalar field** ϕ of mass m with a quadratic potential $V(\phi)$ evolves in a flat FRW universe.
- We'll focus on the case where at time $t^{(0)}$, this field is displaced from its potential minimum by $\phi^{(0)}$, but has negligible initial velocity $\dot{\phi}(t^{(0)}) \approx 0$.
- We'll also assume that its energy density $\rho_{\phi} \ll \rho_{\text{crit}}$ is **subdominant** and has negligible impact on the Hubble parameter H.
- Rather, the energy density is dominated by a perfect fluid with constant equation-of-state parameter w.

- To set the stage, let's recall how the homogeneous zero-mode of a **single scalar field** ϕ of mass m with a quadratic potential $V(\phi)$ evolves in a flat FRW universe.
- We'll focus on the case where at time $t^{(0)}$, this field is displaced from its potential minimum by $\phi^{(0)}$, but has negligible initial velocity $\dot{\phi}(t^{(0)}) \approx 0$.
- We'll also assume that its energy density $\rho_{\phi} \ll \rho_{\text{crit}}$ is **subdominant** and has negligible impact on the Hubble parameter H.
- Rather, the energy density is dominated by a perfect fluid with constant equation-of-state parameter w.

 $Hpprox rac{\kappa}{3t}$, where $\kappa \equiv rac{2}{1+w}$

Scalar in a Fixed Background (w = 1/3)

Equation of Motion

$$\ddot{\phi} + 3H\dot{\phi} + m^2\phi = 0$$

Approximate Solution

$$\phi(\tilde{t}) \approx c_J \, \tilde{t}^{(1-\kappa)/2} J_{(\kappa-1)/2}(\tilde{t})$$

$$w_{\phi} = \frac{\frac{1}{2}\dot{\phi}^2 - V}{\frac{1}{2}\dot{\phi}^2 + V}$$

•At early times, when the Hubble-friction term is large, ϕ is <u>overdamped</u> and <u>slowly rolls</u> down its potential.

Scalar in a Fixed Background (w = 1/3)

Equation of Motion

$$\ddot{\phi} + 3H\dot{\phi} + m^2\phi = 0$$

Approximate Solution

$$\phi(\tilde{t}) \approx c_J \, \tilde{t}^{(1-\kappa)/2} J_{(\kappa-1)/2}(\tilde{t})$$

$$w_{\phi} = \frac{\frac{1}{2}\dot{\phi}^2 - V}{\frac{1}{2}\dot{\phi}^2 + V}$$

- •At early times, when the Hubble-friction term is large, ϕ is <u>overdamped</u> and <u>slowly rolls</u> down its potential.
- However, when H(t) drops below 2m/3, the field becomes <u>underdamped</u> and <u>oscillates</u> around the minimum of $V(\phi)$.

Scalar in a Fixed Background (w = 1/3)

Equation of Motion

$$\ddot{\phi} + 3H\dot{\phi} + m^2\phi = 0$$

Approximate Solution

$$\phi(\tilde{t}) \approx c_J \, \tilde{t}^{(1-\kappa)/2} J_{(\kappa-1)/2}(\tilde{t})$$

$$w_{\phi} = \frac{\frac{1}{2}\dot{\phi}^2 - V}{\frac{1}{2}\dot{\phi}^2 + V}$$

- •At early times, when the Hubble-friction term is large, ϕ is <u>overdamped</u> and <u>slowly rolls</u> down its potential.
- However, when H(t) drops below 2m/3, the field becomes <u>underdamped</u> and <u>oscillates</u> around the minimum of $V(\phi)$.
- $w_{\phi}(t)$ oscillates rapidly at late times, but averages to $\langle w \rangle_t \approx 0$ over sufficiently long timescales.

Scalar in a Fixed Background (w = 1/3)

Equation of Motion

$$\ddot{\phi} + 3H\dot{\phi} + m^2\phi = 0$$

Approximate Solution

$$\phi(\tilde{t}) \approx c_J \, \tilde{t}^{(1-\kappa)/2} J_{(\kappa-1)/2}(\tilde{t})$$

$$w_{\phi} = \frac{\frac{1}{2}\dot{\phi}^2 - V}{\frac{1}{2}\dot{\phi}^2 + V}$$

- •At early times, when the Hubble-friction term is large, ϕ is <u>overdamped</u> and <u>slowly rolls</u> down its potential.
- However, when H(t) drops below 2m/3, the field becomes <u>underdamped</u> and <u>oscillates</u> around the minimum of $V(\phi)$.
- $w_{\phi}(t)$ oscillates rapidly at late times, but averages to $\langle w \rangle_t \approx 0$ over sufficiently long timescales.
 - **➡** Behaves like massive matter

Equation of Motion

$$\ddot{\phi} + 3H\dot{\phi} + m^2\phi = 0$$

Approximate Solution

$$\phi(\tilde{t}) \approx c_J \, \tilde{t}^{(1-\kappa)/2} J_{(\kappa-1)/2}(\tilde{t})$$

$$w_{\phi} = \frac{\frac{1}{2}\dot{\phi}^2 - V}{\frac{1}{2}\dot{\phi}^2 + V}$$

• Now let's consider the case in which the universe comprises a <u>tower</u> of N such scalars ϕ_{ℓ} , where the index $\ell = 0, 1, 2, ..., N-1$ labels these states in order of increasing mass.

- Now let's consider the case in which the universe comprises a <u>tower</u> of N such scalars ϕ_{ℓ} , where the index $\ell = 0, 1, 2, ..., N-1$ labels these states in order of increasing mass.
- Consider a <u>mass spectrum</u> (motivated by KK towers): $m_{\ell} = m_0 + (\Delta m)\ell^{\delta}$

- Now let's consider the case in which the universe comprises a <u>tower</u> of N such scalars ϕ_{ℓ} , where the index $\ell = 0, 1, 2, ..., N-1$ labels these states in order of increasing mass.
- Consider a mass spectrum (motivated by KK towers): $m_\ell = m_0 + (\Delta m)\ell^\delta$
- For simplicity, we'll assume <u>no couplings</u> exist between the different ϕ_{ℓ} , and that each field has its own quadratic potential $V_{\ell}(\phi_{\ell})$.

- Now let's consider the case in which the universe comprises a <u>tower</u> of N such scalars ϕ_{ℓ} , where the index $\ell = 0, 1, 2, ..., N-1$ labels these states in order of increasing mass.
- Consider a mass spectrum (motivated by KK towers): $m_\ell = m_0 + (\Delta m)\ell^\delta$
- For simplicity, we'll assume **no couplings** exist between the different ϕ_{ℓ} , and that each field has its own quadratic potential $V_{\ell}(\phi_{\ell})$.

- Now let's consider the case in which the universe comprises a <u>tower</u> of N such scalars ϕ_{ℓ} , where the index $\ell = 0, 1, 2, ..., N-1$ labels these states in order of increasing mass.
- Consider a mass spectrum (motivated by KK towers): $m_\ell = m_0 + (\Delta m)\ell^\delta$
- For simplicity, we'll assume **no couplings** exist between the different ϕ_{ℓ} , and that each field has its own quadratic potential $V_{\ell}(\phi_{\ell})$.

• We'll also assume (for the moment) that there's <u>no background energy</u> <u>component</u>: the collective energy density of the ϕ_{ℓ} dominates the universe.

- Now let's consider the case in which the universe comprises a <u>tower</u> of N such scalars ϕ_{ℓ} , where the index $\ell = 0, 1, 2, ..., N-1$ labels these states in order of increasing mass.
- Consider a mass spectrum (motivated by KK towers): $m_\ell = m_0 + (\Delta m)\ell^\delta$
- For simplicity, we'll assume <u>no couplings</u> exist between the different ϕ_{ℓ} , and that each field has its own quadratic potential $V_{\ell}(\phi_{\ell})$.
- The system of (coupled) Boltzmann and Friedmann equations that describes the evolution of the ϕ_{ℓ} and H in this case is therefore...

$$N$$
 "copies" of this
$$\ddot{\phi}_\ell+3H\dot{\phi}_\ell+m_\ell^2\phi_\ell=0 \qquad H=rac{1}{3M_P^2}\sum_{\ell=0}^{N-1}\rho_\ell$$

- Now let's consider the case in which the universe comprises a <u>tower</u> of N such scalars ϕ_{ℓ} , where the index $\ell = 0, 1, 2, ..., N-1$ labels these states in order of increasing mass.
- Consider a mass spectrum (motivated by KK towers): $m_\ell = m_0 + (\Delta m)\ell^\delta$
- For simplicity, we'll assume <u>no couplings</u> exist between the different ϕ_{ℓ} , and that each field has its own quadratic potential $V_{\ell}(\phi_{\ell})$.
- The system of (coupled) Boltzmann and Friedmann equations that describes the evolution of the ϕ_{ℓ} and H in this case is therefore...

$$N$$
 "copies" of this
$$\ddot{\phi}_\ell + 3H\dot{\phi}_\ell + m_\ell^2\phi_\ell = 0$$

$$H = \frac{1}{3M_P^2}\sum_{\ell=0}^{N-1}\rho_\ell$$

Let's see what the cosmology of such a tower of scalar-field zero modes looks like!

Initial Conditions

- All that now remains is to specify the initial conditions for our scalars.
- For simplicity (and because it's consistent with many standard abundance-generation mechanisms for fields of this sort e.g., vacuum misalignment), we once again take $\dot{\phi}_{\ell}(t^{(0)}) \approx 0$ for all of the ϕ_{ℓ} .
- However, we still need both an <u>overall mass scale</u> for the displacements and to know <u>how they scale</u> with ℓ across the tower.
- We assume a power-law scaling for the initial abundances of the form

$$\Omega_{\ell}^{(0)} = \Omega_0^{(0)} \left(\frac{m_{\ell}}{m_0}\right)^{\alpha}$$

• For a given mass spectrum, the overall scale of the abundances can be parameterized by the ratio $\phi_0^{(0)}/M_P$, or, equivalently, by the ratio $H^{(0)}/m_{N-1}$.

• Each ϕ_{ℓ} transitions to the underdamped phase when when $3H(t) = 2m_{\ell}$.

- Each ϕ_{ℓ} transitions to the underdamped phase when when $3H(t) = 2m_{\ell}$.
- As time goes on, increasingly lighter fields begin oscillating

- Each ϕ_{ℓ} transitions to the underdamped phase when when $3H(t) = 2m_{\ell}$.
- As time goes on, increasingly lighter fields begin oscillating
- At any given time t, there is a critical value ℓ_c of ℓ below which the ϕ_ℓ remain overdamped.

- Each ϕ_{ℓ} transitions to the underdamped phase when when $3H(t) = 2m_{\ell}$.
- As time goes on, increasingly lighter fields begin oscillating
- At any given time t, there is a critical value ℓ_c of ℓ below which the ϕ_ℓ remain overdamped.
- Thus, we can divide the tower into <u>two regions</u>, which we treat as different energy components:

- Each ϕ_{ℓ} transitions to the underdamped phase when when $3H(t) = 2m_{\ell}$.
- As time goes on, increasingly lighter fields begin oscillating
- At any given time t, there is a critical value ℓ_c of ℓ below which the ϕ_ℓ remain overdamped.
- Thus, we can divide the tower into <u>two regions</u>, which we treat as different energy components:
 - Slow-roll component: states with $3H(t) \ge 2m_{\ell}$.

$$\Omega_{\rm SR}(t) = \sum_{\ell=0}^{\ell_c(t)} \Omega_{\ell}(t)$$

■ Oscillatory component: states with $3H(t) \le 2m_{\ell}$.

$$\Omega_{\rm osc}(t) = \sum_{\ell=\ell_c(t)}^{N-1} \Omega_{\ell}(t)$$

- Each ϕ_{ℓ} transitions to the underdamped phase when when $3H(t) = 2m_{\ell}$.
- As time goes on, increasingly lighter fields begin oscillating
- At any given time t, there is a critical value ℓ_c of ℓ below which the ϕ_ℓ remain overdamped.
- Thus, we can divide the tower into <u>two regions</u>, which we treat as different energy components:
 - Slow-roll component: states with $3H(t) \ge 2m_{\ell}$.

$$\Omega_{\rm SR}(t) = \sum_{\ell=0}^{\ell_c(t)} \Omega_{\ell}(t)$$

■ Oscillatory component: states with $3H(t) \le 2m_{\ell}$.

$$\Omega_{\rm osc}(t) = \sum_{\ell=\ell_c(t)}^{N-1} \Omega_{\ell}(t)$$

- Each ϕ_{ℓ} transitions to the underdamped phase when when $3H(t) = 2m_{\ell}$.
- As time goes on, increasingly lighter fields begin oscillating
- At any given time t, there is a critical value ℓ_c of ℓ below which the ϕ_ℓ remain overdamped.
- Thus, we can divide the tower into <u>two regions</u>, which we treat as different energy components:
 - Slow-roll component: states with $3H(t) \ge 2m_{\ell}$.

$$\Omega_{\rm SR}(t) = \sum_{\ell=0}^{\ell_c(t)} \Omega_{\ell}(t)$$

■ Oscillatory component: states with $3H(t) \le 2m_{\ell}$.

$$\Omega_{\rm osc}(t) = \sum_{\ell=\ell_c(t)}^{N-1} \Omega_{\ell}(t)$$

Oscillatory

Dynamical Evolution

- Each ϕ_{ℓ} transitions to the underdamped phase when when $3H(t) = 2m_{\ell}$.
- As time goes on, increasingly lighter fields begin oscillating
- At any given time t, there is a critical value ℓ_c of ℓ below which the ϕ_ℓ remain overdamped.
- Thus, we can divide the tower into <u>two regions</u>, which we treat as different energy components:
 - Slow-roll component: states with $3H(t) \ge 2m_{\ell}$.

$$\Omega_{\rm SR}(t) = \sum_{\ell=0}^{\ell_c(t)} \Omega_{\ell}(t)$$

• Oscillatory component: states with $3H(t) \le 2m_{\ell}$.

$$\Omega_{\rm osc}(t) = \sum_{\ell=\ell_c(t)}^{N-1} \Omega_{\ell}(t)$$

The Question:

Can we achieve a stasis
between these slow-roll and
oscillatory cosmological
energy components, which act
like vacuum energy and
matter, respectively?

• In stasis, the effective equation-of-state parameter $\langle w \rangle = \overline{w}$ for the universe as a whole is **constant** by assumption.

- In stasis, the effective equation-of-state parameter $\langle w \rangle = \overline{w}$ for the universe as a whole is **constant** by assumption.
- •Since $\kappa = \overline{\kappa}$ must be constant during stasis, the equation of motion for each ϕ_{ℓ} must have exactly the same form as in the **single-field** case.

- In stasis, the effective equation-of-state parameter $\langle w \rangle = \overline{w}$ for the universe as a whole is **constant** by assumption.
- Since $\kappa = \overline{\kappa}$ must be constant during stasis, the equation of motion for each ϕ_{ℓ} must have exactly the same form as in the **single-field** case.
- Thus, so does the solution:

$$\phi_{\ell}(t) \approx c_{\ell}(m_{\ell}t)^{(1-\overline{\kappa})/2} J_{(\overline{\kappa}-1)/2}(m_{\ell}t)$$

- In stasis, the effective equation-of-state parameter $\langle w \rangle = \overline{w}$ for the universe as a whole is **constant** by assumption.
- Since $\kappa = \overline{\kappa}$ must be constant during stasis, the equation of motion for each ϕ_{ℓ} must have exactly the same form as in the **single-field** case.

• Thus, so does the solution:
$$\phi_\ell(t) \approx c_\ell(m_\ell t)^{(1-\overline{\kappa})/2} J_{(\overline{\kappa}-1)/2}(m_\ell t)$$

• In the regime in which the density of states per unit mass is large and we can approximate sums over ℓ with integrals over a continuous mass variable m, the energy density of the slow-roll component is

$$\rho_{\rm SR} \approx \frac{C}{\delta \Delta m^{1/\delta} m_0^{\alpha}} \frac{1}{t^{\alpha+1/\delta}} \int_0^{3Ht/2} d(mt) \ (mt)^{\alpha+1/\delta-\overline{\kappa}} \left[J_{\frac{\overline{\kappa}+1}{2}}^2(mt) + J_{\frac{\overline{\kappa}-1}{2}}^2(mt) \right]$$

- In stasis, the effective equation-of-state parameter $\langle w \rangle = \overline{w}$ for the universe as a whole is **constant** by assumption.
- Since $\kappa = \overline{\kappa}$ must be constant during stasis, the equation of motion for each ϕ_{ℓ} must have exactly the same form as in the **single-field** case.

• Thus, so does the solution:
$$\phi_\ell(t) \approx c_\ell(m_\ell t)^{(1-\overline{\kappa})/2} J_{(\overline{\kappa}-1)/2}(m_\ell t)$$

• In the regime in which the density of states per unit mass is large and we can approximate sums over ℓ with integrals over a continuous mass variable m, the energy density of the slow-roll component is

$$\rho_{\rm SR} \approx \frac{C}{\delta \Delta m^{1/\delta} m_0^{\alpha}} \frac{1}{t^{\alpha+1/\delta}} \int_0^{3Ht/2} d(mt) \ (mt)^{\alpha+1/\delta-\overline{\kappa}} \left[J_{\frac{\overline{\kappa}+1}{2}}^2(mt) + J_{\frac{\overline{\kappa}-1}{2}}^2(mt) \right]$$

- In stasis, the effective equation-of-state parameter $\langle w \rangle = \overline{w}$ for the universe as a whole is **constant** by assumption.
- Since $\kappa = \overline{\kappa}$ must be constant during stasis, the equation of motion for each ϕ_{ℓ} must have exactly the same form as in the **single-field** case.

• Thus, so does the solution:
$$\phi_\ell(t) \approx c_\ell(m_\ell t)^{(1-\overline{\kappa})/2} J_{(\overline{\kappa}-1)/2}(m_\ell t)$$

• In the regime in which the density of states per unit mass is large and we can approximate sums over ℓ with integrals over a continuous mass variable m, the energy density of the slow-roll component is

$$\rho_{\rm SR} \approx \frac{C}{\delta \Delta m^{1/\delta} m_0^{\alpha}} \frac{1}{t^{\alpha+1/\delta}} \int_0^{3Ht/2} d(mt) \ (mt)^{\alpha+1/\delta-\overline{\kappa}} \left[J_{\frac{\overline{\kappa}+1}{2}}^2(mt) + J_{\frac{\overline{\kappa}-1}{2}}^2(mt) \right]$$

Constant

- In stasis, the effective equation-of-state parameter $\langle w \rangle = \overline{w}$ for the universe as a whole is **constant** by assumption.
- Since $\kappa = \overline{\kappa}$ must be constant during stasis, the equation of motion for each ϕ_{ℓ} must have exactly the same form as in the **single-field** case.

• Thus, so does the solution:
$$\phi_\ell(t) \approx c_\ell(m_\ell t)^{(1-\overline{\kappa})/2} J_{(\overline{\kappa}-1)/2}(m_\ell t)$$

• In the regime in which the density of states per unit mass is large and we can approximate sums over ℓ with integrals over a continuous mass variable m, the energy density of the slow-roll component is

$$\rho_{\rm SR} \approx \frac{C}{\delta \Delta m^{1/\delta} m_0^{\alpha}} \underbrace{\begin{bmatrix} \frac{1}{t^{\alpha+1/\delta}} \end{bmatrix}_0^{3Ht/2}}_{\text{Constant in stasis, since: } H = \bar{\kappa}/(3t)}_{\text{Constant in stasis, since: } H = \bar{\kappa}/(3t)}_{\text{Constant in stasis, since: } H = \bar{\kappa}/(3t)}$$

Only time-dependence

Constant

- In stasis, the effective equation-of-state parameter $\langle w \rangle = \overline{w}$ for the universe as a whole is **constant** by assumption.
- Since $\kappa = \overline{\kappa}$ must be constant during stasis, the equation of motion for each ϕ_{ℓ} must have exactly the same form as in the **single-field** case.

• Thus, so does the solution:
$$\phi_\ell(t) \approx c_\ell(m_\ell t)^{(1-\overline{\kappa})/2} J_{(\overline{\kappa}-1)/2}(m_\ell t)$$

• In the regime in which the density of states per unit mass is large and we can approximate sums over ℓ with integrals over a continuous mass variable m, the energy density of the slow-roll component is

$$\rho_{\mathrm{SR}} \approx \frac{C}{\delta \Delta m^{1/\delta} m_0^{\alpha}} \underbrace{\frac{1}{t^{\alpha+1/\delta}}}_{0} \underbrace{\int_{0}^{3Ht/2} d(mt) \ (mt)^{\alpha+1/\delta-\overline{\kappa}}}_{\mathrm{Constant}} \underbrace{\left[J_{\overline{\kappa}+1}^2(mt) + J_{\overline{\kappa}-1}^2(mt)\right]}_{\mathrm{Constant}}$$
 Only time-dependence

By definition, stasis requires:

$$\overline{\Omega}_{\rm SR} = \frac{\rho_{\rm SR}}{3M_P^2 H^2} \approx [{\rm const.}]$$

- In stasis, the effective equation-of-state parameter $\langle w \rangle = \overline{w}$ for the universe as a whole is **constant** by assumption.
- Since $\kappa = \overline{\kappa}$ must be constant during stasis, the equation of motion for each ϕ_{ℓ} must have exactly the same form as in the **single-field** case.

• Thus, so does the solution:
$$\phi_\ell(t) \approx c_\ell(m_\ell t)^{(1-\overline{\kappa})/2} J_{(\overline{\kappa}-1)/2}(m_\ell t)$$

• In the regime in which the density of states per unit mass is large and we can approximate sums over ℓ with integrals over a continuous mass variable m, the energy density of the slow-roll component is

$$\rho_{\rm SR} \approx \frac{C}{\delta \Delta m^{1/\delta} m_0^\alpha} \underbrace{\frac{1}{t^{\alpha+1/\delta}}}_{0} \underbrace{\int_{0}^{3Ht/2} d(mt) \ (mt)^{\alpha+1/\delta-\overline{\kappa}}}_{0} \left[J_{\frac{\overline{\kappa}+1}{2}}^2(mt) + J_{\frac{\overline{\kappa}-1}{2}}^2(mt)\right]}_{0}$$
 Only time-dependence

Constant

By definition, stasis requires:

$$\overline{\Omega}_{\rm SR} = rac{
ho_{\rm SR}}{3M_P^2 H^2} pprox [{\rm const.}]$$
 $\alpha + rac{1}{\delta} = 2$

- In stasis, the effective equation-of-state parameter $\langle w \rangle = \overline{w}$ for the universe as a whole is **constant** by assumption.
- Since $\kappa = \overline{\kappa}$ must be constant during stasis, the equation of motion for each ϕ_{ℓ} must have exactly the same form as in the **single-field** case.

• Thus, so does the solution:
$$\phi_\ell(t) \approx c_\ell(m_\ell t)^{(1-\overline{\kappa})/2} J_{(\overline{\kappa}-1)/2}(m_\ell t)$$

• In the regime in which the density of states per unit mass is large and we can approximate sums over ℓ with integrals over a continuous mass variable m, the energy density of the slow-roll component is

$$\rho_{\rm SR} \approx \frac{C}{\delta \Delta m^{1/\delta} m_0^{\alpha}} \underbrace{\frac{1}{t^{\alpha+1/\delta}}}_{0} \underbrace{\int_{0}^{3Ht/2}}_{0} \underbrace{\frac{C}{d(mt)} (mt)^{\alpha+1/\delta-\overline{\kappa}}}_{0} \left[J_{\frac{\overline{\kappa}+1}{2}}^2(mt) + J_{\frac{\overline{\kappa}-1}{2}}^2(mt)\right]}_{0}$$

Only time-dependence

Constant

By definition, stasis requires:

$$\overline{\Omega}_{\mathrm{SR}} = \frac{
ho_{\mathrm{SR}}}{3M_P^2 H^2} \approx [\mathrm{const.}]$$
 $\alpha + \frac{1}{\delta} = 2$

Towers which satisfy this relation give rise to stasis. For $\delta = 1$, this corresponds to

Effect of Initial Conditions

- Unlike in previous realizations of stasis, the stasis abundances $\overline{\Omega}_{SR}$ and $\overline{\Omega}_{SR}$ depend on the <u>initial conditions</u> for the scalar tower.
- In particular, $\bar{\Omega}_{\rm SR}$ and $\bar{\Omega}_{\rm SR}$ are sensitive to the ratio $\phi_0^{(0)}/M_P$ which parametrizes the overall scale of the initial zero-mode displacements.

Impact of Initial Conditions

Duration of Stasis

Evolution Toward Stasis

$$\alpha = 1$$
 $\delta = 1$ $N = 5000$

• Let's now consider how the cosmological dynamics is modified if we include a <u>background energy component</u> with a constant equation-of-state parameter w_{BG} in addition to the tower.

- Let's now consider how the cosmological dynamics is modified if we include a **background energy component** with a constant equation-of-state parameter w_{BG} in addition to the tower.
- It turns out that in the presence of such an energy component, the universe still evolves toward stasis (or something like it).

- Let's now consider how the cosmological dynamics is modified if we include a **background energy component** with a constant equation-of-state parameter w_{BG} in addition to the tower.
- It turns out that in the presence of such an energy component, the universe still evolves toward stasis (or something like it).
- However, the outcome depends on the relationship between w_{BG} and the equation-of-state parameter \overline{w} the tower would have had during stasis if the background component weren't present.

 The <u>tracking phenomenon</u> which arises in wBG < w has not been observed in other realizations of stasis.

• These results provide insight about how th universe might enter into – or exit from – an stasis epoch involving dynamical scalars.

• It's also noteworthy that this tracking behavior is quite robust and persists even when w_{BG} experiences an abrupt shift (as might occur, for example, as the result of a phase transition).

- It's also noteworthy that this tracking behavior is quite robust and persists even when w_{BG} experiences an abrupt shift (as might occur, for example, as the result of a phase transition).
- Indeed, as long as w_{BG} remains below \overline{w} , the tower's equation-of-state parameter $\langle w \rangle$ continues to evolve toward the new value of w_{BG} after the shift, regardless of whether this shift is positive or negative.

Summary

- <u>Stable, mixed-component cosmological eras</u> i.e. <u>stasis eras</u> are indeed a viable cosmological possibility and one that can arise naturally in many extensions of the Standard Model.
- A tower of scalar fields which undergo a transition from overdamped to underdamped evolution can give rise to stasis.
- Stasis itself is an <u>attractor</u> in these systems, but several fundamental characteristics of the stasis epoch toward which the universe evolves depend on the initial conditions.
- In the presence of an additional background component with equation-of-state parameter w_{BG} , the tower exhibits a <u>tracking behavior</u> in which its own equation-of-state parameter evolves toward w_{BG} .

