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● Cosmological stasis is a phenomenon in which the abundances of 
multiple cosmological energy components (matter, radiation, etc.) remain 
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● Pump terms with the right time-dependence for stasis emerge naturally 
in scenarios involving towers of states with broad spectra of masses, 
cosmological abundances, lifetimes, etc.

String theory (string moduli, axions, etc.)

Theories with extra spacetime dimensions (KK towers)

Scenarios which lead to the production of primordial black holes 
with an extended mass spectrum (the black holes themselves)

● Such towers are a facet of numerous BSM-physics scenarios including...

● The modified cosmological histories 
associated with stasis can affect the evolution 
of scalar and tensor perturbations.

See Anna Paulsen’s talk 
(directly after this one)
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following:

● Such a stasis, as we’ll see, would be characterized by an effective 
equation-of-state parameter between that of vacuum energy (wΛ = -1) 
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● Moreover, stases involving dynamical scalars give rise to some 
phenomena not seen in other realizations of stasis which could 
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● We’ll also assume (for the moment) that there’s no background energy 
component: the collective energy density of the ϕℓ dominates the 
universe. 
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● Now let’s consider the case in which the universe comprises a tower of 
N such scalars ϕℓ, where the index ℓ = 0, 1, 2, …, N – 1 labels these states 
in order of increasing mass. 

● Consider a mass spectrum (motivated by KK towers):

● For simplicity, we’ll assume no couplings exist between the different ϕℓ, 
and that each field has its own quadratic potential Vℓ(ϕℓ).

● The system of (coupled) Boltzmann and Friedmann equations that 
describes the evolution of the ϕℓ and H in this case is therefore...

N “copies” of this

Let’s see what the cosmology of such a 
tower of scalar-field zero modes looks like!



  

Initial Conditions
● All that now remains is to specify the initial conditions for our scalars. 

● However, we still need both an overall mass scale for the 
displacements and to know how they scale with ℓ across the tower.

● We assume a power-law scaling for the initial abundances of the form

● For a given mass spectrum, the overall 
scale of the abundances can be 
parameterized by the ratio               , or, 
equivalently, by the ratio H(0)/mN-1.  

● For simplicity (and because it’s consistent with many standard 
abundance-generation mechanisms for fields of this sort – e.g., vacuum 
misalignment ), we once again take                     for all of the ϕℓ.
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into two regions, which we treat 
as different energy components:

Slow-roll component: 
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The Question:

Can we achieve a stasis 
between these slow-roll and 

oscillatory cosmological 
energy components, which act 

like vacuum energy and 
matter, respectively?
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● In stasis, the effective equation-of-state parameter                for the 
universe as a whole is constant by assumption.

● Since            must be constant during stasis, the equation of motion for 
each ϕℓ must have exactly the same form as in the single-field case.

● Thus, so does the solution:

● In the regime in which the density of states per unit mass is large and we 
can approximate sums over ℓ with integrals over a continuous mass 
variable m, the energy density of the slow-roll component is

Constant
Only time-dependence

Constant in stasis, since: H = κ/(3t)

● By definition, stasis requires: Towers which satisfy this 
relation give rise to stasis.  

For δ = 1, this corresponds to



  

Effect of Initial Conditions
● Unlike in previous realizations of stasis, the stasis abundances ΩSR and 
ΩSR depend on the initial conditions for the scalar tower.

● In particular, ΩSR and ΩSR are sensitive to the ratio                which 
parametrizes the overall scale of the initial zero-mode displacements.
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Background Components and Tracking
● Let’s now consider how the cosmological dynamics is modified if we 
include a background energy component with a constant equation-of-
state parameter wBG in addition to the tower.
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● However, the outcome depends on the relationship between wBG and the 
equation-of-state parameter w the tower would have had during stasis if 
the background component weren’t present.



  

Background Components and Tracking
● The tracking phenomenon which arises in wBG < w has not been 
observed in other realizations of stasis. 
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● These results provide insight about how th universe might enter into – or 
exit from – an stasis epoch involving dynamical scalars.



  

Background Components and Tracking
● It’s also noteworthy that this tracking behavior is quite robust and 
persists even when wBG experiences an abrupt shift (as might occur, 
for example, as the result of a phase transition).
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● Indeed, as long as wBG remains below w, the tower’s equation-of-state 
parameter       continues to evolve toward the new value of wBG after the 
shift, regardless of whether this shift is positive or negative. 



  

Summary

● In the presence of an additional background component with equation-
of-state parameter wBG, the tower exhibits a tracking behavior in which 
its own equation-of-state parameter evolves toward wBG. 

● Stable, mixed-component cosmological eras – i.e. stasis eras – are 
indeed a viable cosmological possibility – and one that can arise 
naturally in many extensions of the Standard Model. 

● Stasis itself is an attractor in these systems, but several fundamental 
characteristics of the stasis epoch toward which the universe evolves 
depend on the initial conditions.

● A tower of scalar fields which undergo a transition from overdamped to 
underdamped evolution can give rise to stasis.
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