Energy Correlators, Heavy Flavor, & Precision QCD **Evan Craft — Yale University DPF-Pheno 2024** Based on work with K. Lee, B. Mecaj, I. Moult, & M. Gonzalez Yale University ## Collider Experiments Many important questions have been addressed at collider experiments → Great historical success in verifying properties of the standard model - → But the detailed structure of QCD produces immensely complicated datasets. - → Need new tools for future success A unique frontier for novel collaborations between both theory and experiment ## How do we study collisions? ## Along with many more exciting observations! Several remarkable observations made by studying jets → provided initial evidence for the existence of the Quark Gluon Plasma → allowed first ever observation of the "dead cone" effect of QCD → provides the most stringent bounds on charm Yukawa couplings ## How do we study collisions? - → First introduced EEC as experimental observable sensitive to α_s (1978) - \rightarrow Measured in e^+e^- by PLUTO (1978) $$EEC(\chi) = \frac{1}{\Delta \chi N} \int_{\chi - \Delta \chi/2}^{\chi + \Delta \chi/2} \sum_{\text{events}}^{N} \sum_{i,j} \frac{E_i E_j}{E_{\text{vis}}^2} \delta(\chi' - \chi_{ij}) \, d\chi'$$ ## How do we study collisions? $$EEC(\chi) = \frac{\chi + \Delta \chi/2}{N} = \frac{K \frac$$ #### ADVANTAGES OF THE COLOR OCTET GLUON PICTURE[☆] H. FRITZSCH*, M. GELL-MANN and H. LEUTWYLER** California Institute of Technology, Pasadena, Calif. 91109, USA Received 1 October 1973 It is pointed out that there are several advantages in abstracting properties of hadrons and their currents from a Yang-Mills gauge model based on colored quarks and color octet gluons. $\cos \theta$ "Energy Correlator" (EEC) ### The EEC in 2024 #### "Energy Correlator" (EEC) $846 < p_{_{\rm T}}^{\rm j} < 1101 \, \text{GeV} \stackrel{\text{I}}{=} 1101$ PYTHIA8 CP5(simple sl "This is the most precise measurement of $\alpha_s(M_Z)$ by a jet substructure observable to date" #### Quote taken directly from: **CMS** Collaboration, 2024 **N** Data $638 < p_{\tau}^{j} < 846 \text{ GeV}$ — HERWIG7 CH3(angular-ordered) — HERWIG7 Dipole ### The EEC in 2024 #### "Energy Correlator" (EEC) ### From Searches to Measurements To fully take advantage of the LHC, it is necessary to bolster our current physics searches with first principles theory calculations \rightarrow Many interesting opportunities to study QCD at high energies: understanding confinement, precision measurements, $\alpha_{\rm S}, m_t \dots$ Requires the development of a new set of theoretical tools ## Reformulating Jet Substructure Field Theoretic Foundations ## **Energy Flow Operators** From the perspective of QFT, jet substructure is the study of correlation functions of energy flow operators $$\mathcal{E}(\overrightarrow{n}) = \lim_{t \to \infty} t^3 \int_0^1 dv \, v^2 \left[n^i T_i^0(t, tv \overrightarrow{n}) \right]$$ Sveshnikov, Tkachov (1995) → "Energy Flow Operator" $$\langle \Psi | \mathcal{E}(\hat{n}_1) \dots \mathcal{E}(\hat{n}_k) | \Psi \rangle$$ → "Statistical Correlations" These correlation functions measure the flow of energy at infinity. ## **Energy Flow Operators** Situations of interest at the LHC involve non-generic configurations of lightray operators: interested in the small angle (OPE) limit. $$\mathcal{E}(\hat{n}_1)\mathcal{E}(\hat{n}_2) \sim \sum_i \theta^{\tau_i-4} \mathbb{O}_i(\hat{n}_1)$$ [Hofman, Maldacena] In the small angle limit, these lightray operators should exhibit the universal behavior of QCD ## **Energy Flow Operators** It is precisely this scaling behaviour which allows for such precise measurements of $\alpha_{\rm s}(M_7)$ ## Going Beyond $\alpha_s(M_Z)$ Several open questions remain across both Particle and Nuclear Physics → Many of these open problems are deeply connected to Quantum Chromodynamics → Why is color charge so complicated? #### Hot QCD Medium QCD Cold QCD → Quark Gluon Plasma → Strong CP → Rare Higgs Decays → Confinement → Gluon Saturation → Proton Spin and Radius Puzzle → 3D Structure of protons and nuclei Numerous collider experiments spanning several continents working to resolve these fundamental questions E. Craft (Yale) → Hadronization → Quarkonia ## **Beautiful and Charming Energy Correlators** Evan Craft — Yale University arXiv: 2210.09311 Based on work with K. Lee, B. Mecaj, I. Moult **Yale University** MIT #### Intrinsic masses of QCD imprinted onto energy correlators - → allows for an unprecedented window into hadronization effects - → provides a powerful perspective for probing jet substructure - → provides a new, unifying technique for understanding intrinsic mass $$\langle \Psi | \mathcal{E}(\hat{n}_1) ... \mathcal{E}(\hat{n}_k) | \Psi \rangle$$ the "perfect" observable [ALICE Collaboration, Nature Physics] Dokshitzer, Khoze, Troyan (1991) Heavy quark radiation of gluons is suppressed within a cone of radius m_q/E_q around its center. - → Fundamental property of all gauge field theories - → Direct signature of intrinsic mass before confinement We can access this effect simply with statistical correlations (light-ray operators) — providing a precise, field theoretic description of the dead cone. Measured this year by ALICE using a complex iterative declustering technique - → Inferred all gluon emissions *directly* - → State of the art analysis techniques Heavy quark radiation of gluons is *suppressed* within a cone $\theta_q \sim m_q/E_q$ and this suppression is visibly imprinted on energy correlators [EC, Lee, Mecaj, Moult] Exposes the "dead-cone" effect of fundamental QCD, using correlations of light-ray operators → first collinear NLL calculation of a heavy quark jet substructure observable at the LHC $$EEC = H \times J \times S$$ fundamental test of SCET factorization at the LHC In the UV regime, scaling should be independent of mass $$\mathcal{E}(\hat{n}_1)\mathcal{E}(\hat{n}_2) \sim \sum_{i} \theta^{\tau_i - 4} \mathbb{O}_i(\hat{n}_1)$$ In the IR regime, mass is an intrinsic scale, and should be imprinted on the correlator $$\langle \Psi | \mathscr{E}(\hat{n}_1) ... \mathscr{E}(\hat{n}_k) | \Psi \rangle$$ [EC, Lee, Mecaj, Moult] EECs provide a precise, field-theoretic description of the dead-cone effect Transition Scale $$\sim \frac{m_q}{p_{T,jet}}$$ # Pushing the Boundaries of Jet Substructure Evan Craft — Yale University Work in prep. with K. Lee, B. Mecaj, I. Moult, & M. Gonzalez Yale University ## Extension: Higher Points Natural to also consider higher point correlators shape of the dead-cone! transverse spin 0 $$\mathcal{O}_{q}^{[J]} = \frac{1}{2^{J}} \bar{\psi} \gamma^{+} (iD^{+})^{J-1} \psi$$ $$\mathcal{O}_{g}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu+} \gamma^{+} (iD^{+})^{J-2} F_{a}^{\mu-1}$$ excited by 2-point transverse spin 2 Collinear Limit $$\mathcal{O}_{q}^{[J]} = \frac{1}{2^{J}} \bar{\psi} \gamma^{+} (iD^{+})^{J-1} \psi \qquad \qquad \mathcal{O}_{\tilde{g}\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} \gamma^{+} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda \mu} \epsilon_{\lambda \nu}$$ $$\mathcal{O}_{g}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} \gamma^{+} (iD^{+})^{J-2} F_{a}^{\mu +} \qquad \qquad \uparrow$$ helicity ± 1 excited by 3-point $$\mathscr{E}(\hat{n}_1) \dots \mathscr{E}(\hat{n}_k) \sim \sum_{i} \theta^{\tau_i - 4} \mathbb{O}_i(\hat{n}_1)$$ → Probe fundamental operators of QCD → Access to non-Gaussianities 0.0 → Full Shape Dependence $\mathcal{E}(\vec{n}_1)$ $\mathcal{E}(\vec{n}_2)$ ## Topological Aspects There is a direct mapping from the kinematic configuration of the EEC, to the torus $$y^2 = 4x^3 - g_1x - g_3 \longrightarrow$$ $$\omega_1 \sim {}_2F_1(1/2, 1/2, 1; \lambda)$$ $$\omega_2 \sim {}_2F_1(1/2, 1/2, 1; 1 - \lambda)$$ periods deformed by kinematics Similar degeneration for the three point! [EC, Lee, Mecaj, Moult] ## Extension: Higher Points Natural to also consider higher point correlators $\mathcal{E}(\vec{n}_1)$ $\mathcal{E}(\vec{n}_2)$ $\mathcal{E}(\vec{n}_3)$ $\mathcal{E}(\vec{n}_3)$ $\mathcal{E}(\vec{n}_3)$ $\mathcal{E}(\vec{n}_3)$ $\mathcal{E}(\vec{n}_3)$ **Experimental Side** 3-point EEC allows access to the shape of the dead-cone! → Access to non-Gaussianities → Full Shape Dependence $$\mathcal{E}(\hat{n}_1) \dots \mathcal{E}(\hat{n}_k) \sim \sum_{i} \theta^{\tau_i - 4} \mathbb{O}_i(\hat{n}_1)$$ → Probe fundamental operators of QCD $\mathcal{E}(\vec{n}_1)$ ## Concluding Remarks **Unifying Theory and Experiment** ## Two Symbiotic Perspectives #### **Beautiful and Charming Interplay!** $$\frac{d\sigma}{d\cos\chi} = \sum_{i < j} \int d\sigma \frac{E_i E_j}{Q^2} \delta\left(\overrightarrow{n_i} \cdot \overrightarrow{n_j} - \cos\chi\right)$$ This sort of collaboration is crucial for the success of future collider studies ## Summary Jet substructure provides a physical realization of the OPE limit of light-ray operators → Direct bridge between recent theoretical advancements and QCD Phenomenology Creates an unprecedented symbiosis between theory and experiment → Allowing for sharp probes of interesting physics, new and old