Utilizing the Iron Dump at Short Baseline Neutrino Facilities to Probe Heavy Neutral Lepton and Dark Matter

By Debopam Goswami

Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University

Collaborators: Bhaskar Dutta, Aparajitha Karthikeyan, Kevin James Kelly

DPF-PHENO 2024

Date: 14th May 2024

Motivations

Schematic of SBN Experimental Setup

Motivations

Schematic of SBN Experimental Setup

GOAL 1!

- G Magill, R Plestid, M Pospelov, Yu-Dai Tsai, Phys. Rev. D 98, 115015
- NW. Kamp, MHostert, A Schneider, SVergani, CA. Argüelles, JM. Conrad, MH. Shaevitz, MA. Uchida, Phys. Rev. D 107, 055009

2

Schematic of SBN Experimental Setup

GOAL 2!

Schematic of SBN Experimental Setup

GOAL 3!

- A M. Abdullahi, J H Zink, M Hostert, D Massaro, S Pascoli, arXiv.2308.02543
- V Brdar, O Fischer, AY. Smirnov, Phys. Rev. D 103, 075008

Schematic of SBN Experimental Setup

GOAL 4!

I M. Shoemaker, Y-D Tsai, J Wyenberg, Phys. Rev. D 104, 115026

N W. Kamp, M Hostert, A Schneider, S Vergani, C A. Argüelles, J M. Conrad, M H. Shaevitz, M A. Uchida, Phys. Rev. D 107, 055009

ĀМ

TEXAS A&M

I M. Shoemaker, Y-D Tsai, J Wyenberg, Phys. Rev. D 104, 115026

N W. Kamp, M Hostert, A Schneider, S Vergani, C A. Argüelles, J M. Conrad, M H. Shaevitz, M A. Uchida, Phys. Rev. D 107, 055009

ĀМ

TEXAS A&M

$$\frac{d\sigma_{(\nu N \to Nn)}}{dE_R} = d^2 \alpha Z^2 F^2(E_R) \left(\frac{1}{E_R} - \frac{m_4^2}{2E_\nu E_R m_N} \left(1 - \frac{E_R}{2E_\nu} + \frac{m_N}{2E_\nu} \right) - \frac{1}{E_\nu} + \frac{m_4^4(E_R - m_N)}{8E_\nu^2 E_R^2 m_N^2} \right)$$

Debopam Goswami DPF-PHENO 2024

Model: Heavy Neutral Lepton $\mathcal{L} \supset d(\bar{\nu}_L \sigma_{\mu\nu} F^{\mu\nu} N) + h.c.$ 4 m ν_{μ} Horn Earth/Dirt **Booster** Target Detector Air/Decay Pipe 50 m ld (Not to scale) I M. Shoemaker, Y-D Tsai, J Wyenberg, Phys. Rev. D 104, 115026 NW. Kamp, MHostert, ASchneider, SVergani, CA. Argüelles, J M. Conrad, MH. Shaevitz, MA. Uchida, Phys. Rev. D 107, 055009 Z² Enhancement $\frac{d\sigma_{(\nu N \to Nn)}}{dE_R} = d^2 \alpha Z^2 F^2(E_R) \left(\frac{1}{E_R} - \frac{m_4^2}{2E_\nu E_R m_N} \left(1 - \frac{E_R}{2E_\nu} + \frac{m_N}{2E_\nu} \right) - \frac{1}{E_\nu} + \frac{m_4^4(E_R - m_N)}{8E_\nu^2 E_R^2 m_N^2} \right)$ Helm's Form Factor: $F(E_R) = \frac{3}{(\kappa r)^3} e^{-\kappa^2 s^2/2} (sin(\kappa r) - \kappa r cos(\kappa r))$ Debopam Goswami

3 Upscattering Cross-Section **DPF-PHENO 2024**

A M

TEXAS A&M

SBN Experimental Specifications

4

SBN Experimental Specifications

Constraints in the Parameter Space

Comparison Sensitivity Plot

Comparison Sensitivity Plot

Comparison Sensitivity Plot

SBND Detector vs Dump vs Dirt I

SBND Detector vs Dump vs Dirt I

SBND Detector vs Dump vs Dirt I

SBND Detector vs Dump vs Dirt II

M D Tutto, V Pandey, P Machado, K Kelly, and R Harnik, SBND PRISM NuSTEC CEWG (2021)

SBND Detector vs Dump vs Dirt II

M D Tutto, V Pandey, P Machado, K Kelly, and R Harnik, SBND PRISM NuSTEC CEWG (2021)

MiniBooNE Anomaly in SBND I

• NW. Kamp, MHostert, A Schneider, S Vergani, CA. Argüelles,

9

J M. Conrad, M H. Shaevitz, M A. Uchida, Phys. Rev. D 107, 055009

DPF-PHENO 2024

MiniBooNE Anomaly in SBND II

• NW. Kamp, MHostert, A Schneider, S Vergani, CA. Argüelles,

10 J.M. Conrad, M.H. Shaevitz, M.A. Uchida, Phys. Rev. D 107, 055009

DPF-PHENO 2024

Model: Inelastic Dark Matter

TEXAS A&M

Ă M

SBND Inelastic Dark Matter Sensitivity Plots

M Mongillo, A Abdullahi, B B Oberhauser, P Crivelli, M Hostert, D Massaro, L M Bueno, S Pascoli, Eur. Phys. J. C 83, 391 (2023)

ĂМ

Results and Conclusions

- In this work contributions from dump, dirt and detector have been taken into consideration for transition moment operator for all the SBN experiments.
- The dump allows us to probe more unexplored parameter space.
- SBND covers the most unexplored parameter space!
- The Z^2 enhancement makes the contribution from the dump significant.
- Dump, dirt & detector leave distinguishing signals in both energy & angular spectra for mass range (200 MeV and above within sensitivity region).
- SBND can also explore the parameter space required to explain the MiniBooNE anomaly.
- This work also predicts what SBND will observe for the explanation of MiniBooNE excess (more forward).

13

Thank You!

Questions?

Debopam Goswami

Ā M

TEXAS A&M

BACKUP SLIDES

Debopam Goswami

MiniBooNE Anomaly

Neutrino mode POTs: 12.84*10²⁰

-		
Process	Neutrino Mode	Antineutrino Mode
$ u_{\mu} \ \& \ ar{ u}_{\mu} \ ext{CCQE}$	73.7 ± 19.3	12.9 ± 4.3
NC π^0	501.5 ± 65.4	112.3 ± 11.5
NC $\Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $ u_{\mu} \& \bar{\nu}_{\mu} $	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e \text{ from } \mu^{\pm} \text{ Decay}$	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e \text{ from } K_L^0 \text{ Decay}$	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.6 ± 176.9	398.2 ± 49.7
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6
0.26% (LSND) $\nu_{\mu} \rightarrow \nu_{e}$	463.1	100.0

Figure: Number of Events observed

 $200 < E_{\nu}^{QE} < 1250 MeV$

• 381.2 ± 85.2 excess events are observed at a 4.5σ confidence level in the neutrino mode.

MiniBooNE Collaboration, Phys. Rev. Lett. 121, 221801

Debopam Goswami

LSND Collaboration, Phys. Rev. Lett. 77, 3082

- MiniBooNE Collaboration, Phys. Rev. D 79, 072002
- SBN Proposal: arXiv:1503.01520

Flux Energy Spectrum SBN

Backgrounds

MiniBooNE Collaboration, Phys. Rev. D 103, 052002

A J Mogan, FERMILAB-THESIS-2021-04

ICARUS Sensitivity Plot

Debopam Goswami

MiniBooNE Sensitivity Plot

MicroBooNE Sensitivity Plot

SBND Detector vs Dump vs Dirt III

Mass and Coupling for MiniBooNE Excess Explanation I

• NW. Kamp, MHostert, A Schneider, S Vergani, CA. Argüelles, JM. Conrad, MH. Shaevitz, MA. Uchida, Phys. Rev. D 107, 055009 (References therein)

Mass and Coupling for MiniBooNE Excess Explanation II

• NW. Kamp, MHostert, A Schneider, S Vergani, C A. Argüelles, J M. Conrad, MH. Shaevitz, MA. Uchida, Phys. Rev. D 107, 055009 (References therein)

SBND Inelastic Dark Matter Sensitivity Plots

Model: Complex Scalar Extension of 2HDM

B Dutta, S Ghosh, T Li, Phys. Rev. D 102, 055017

W Abdallah, R Gandhi, S Roy, Phys. Rev. D 104, 055028

 $\mathcal{L} \supset d(\bar{\nu}_{\mu}Nh_1) + y_{eh_1}\bar{f}_if_jh_1 + h.c.$