New Signatures for Color Sextet Scalars- Proposed Searches

Katherine Schwind The Ohio State University

Based on work with L.M. Carpenter and T. Murphy arXiv: 2209.04456 and 2312.09273

May 16, 2024

Introduction & Motivation

There is a wide range of BSM parameter space

Sometimes unwieldy to manage

We use an EFT approach here

$$\mathcal{L}_{
m int} \propto \sum_j rac{c_j}{\Lambda^{n-4}} \mathcal{O}_j$$

	Scala	r sextet Φ only	Dirac	sextet Ψ only	≥ 1 of each			
SU(3) _c invariant	d _{min}	Structure	d _{min}	Structure	d_{\min}	Structure		
$3\otimes 3\otimes 6\otimes 6$	5	$(qq')\Phi\Phi$	6	$(qq')(\Psi\Psi)$	7	$(qq')(\Psi\ell)\Phi$		
	7	$(qq')\Phi H ^2\Phi$		$(q\Psi)(q'\Psi)$		$(q\ell)(q'\Psi)\Phi$		
$3\otimes3\otimes\mathbf{\bar{6}}\otimes8$	6	$(qq')\Phi^{\dagger}G$						
$3 \otimes \overline{3} \otimes \overline{3} \otimes \overline{3} \otimes \overline{6}$	7	$(\bar{q}q')(\bar{q}''\ell)\Phi$	6	$(\bar{q}q')(\bar{q}''\Psi)$				
3 \overline 0		$(qq')^{\dagger}(q''\ell)\Phi$		$(qq')^{\dagger}(\bar{q}^{\prime\prime}\Psi)$				
$3 \otimes \overline{3} \otimes 6 \otimes \overline{6}$	5	$(ar q q') \Phi^\dagger \Phi$	6	$(\bar{q}q')(\bar{\Psi}\Psi)$	7*	$(\bar{q}q')(\bar{\Psi}\ell)\Phi$		
3838080	7	$(\bar{q}q')\Phi^{\dagger} H ^{2}\Phi$		$(\bar{q}\Psi)(\bar{\Psi}q')$		$(\bar{q}\Psi)(q'\ell)\Phi^{\dagger}$		
	6	$(q\ell) \Phi ^2\Phi$	- 6	$(q\Psi)(\bar{\Psi}\Psi)$	5	$(q\Psi)\Phi^{\dagger}\Phi$		
$3\otimes6\otimes6\otimes\bar{6}$		$(\bar{\ell}q) \Phi ^2\Phi$		$(\bar{\Psi}q)(\Psi\Psi)$		$(\bar{\Psi}q)\Phi\Phi$		
3808080					7*	$(q\Psi)(\Psi\ell)\Phi^{\dagger}$		
						$(q\ell)(\bar{\Psi}\Psi)\Phi$		
$3\otimes 6\otimes 8\otimes 8$			7	$(q\Psi)GG$				
$3\otimes \mathbf{ar{6}}\otimes \mathbf{ar{6}}\otimes 8$	7	$(q\ell)\Phi^{\dagger}\Phi^{\dagger}G$			6	$(\bar{\Psi}q)\Phi^{\dagger}G$		
		$(\bar{\ell}q)\Phi^{\dagger}\Phi^{\dagger}G$						
	6†	$ \Phi ^4$				$(ar{\Psi}\ell) \Phi ^2\Phi$		
					6	(Ψℓ) <u></u> ²		

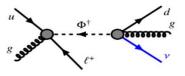
arXiv: 2110.11359

L.M Carpenter, T. Murphy, T.M.P. Tait

3

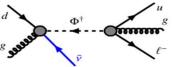
Proposed Operators

Two different color sextet scalar operators

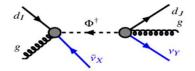

One coupling to charged leptons only, the other to neutrinos or charged leptons

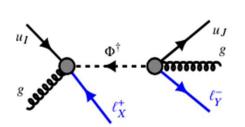
$$\mathcal{L} \supset \frac{1}{\Lambda^2} J^{s\,ia} \Phi_s \, G_{\mu\nu\,a} \qquad (SU(3)_c \times SU(2)_L \times U(1)_Y): (6 \times 1 \times 1/3)$$

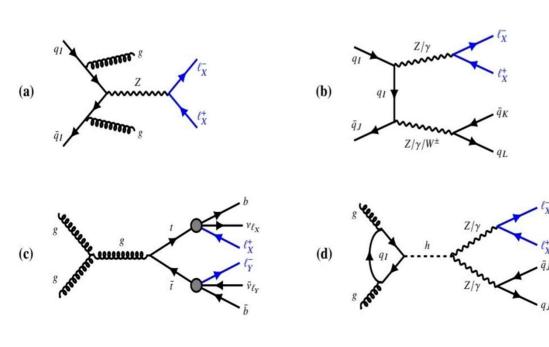
$$\times (\lambda_L^{IX} \overline{Q}_L^c I_I \cdot \sigma^{\mu\nu} L_{LX} + \lambda_R^{IX} \overline{u}_R^c I_I \sigma^{\mu\nu} \ell_{RX}) + \text{H.c.}$$


Signals

$$\begin{split} \mathcal{L} &\supset \frac{1}{\Lambda^2} J^{s\,ia} \, \Phi_s \, G_{\mu\nu\,a} \\ &\times (\lambda_{\rm L}^{IX} \overline{Q}_{\rm L}^{\rm c}{}_{Ii} \cdot \sigma^{\mu\nu} L_{\rm LX} + \lambda_{\rm R}^{IX} \overline{u_{\rm R}^{\rm c}}_{Ii} \, \sigma^{\mu\nu} \ell_{\rm RX}) + {\rm H.c.} \end{split}$$


- Single production modes
- Previous studies of sextets have focused on pair production
- Mass resonance + associated lepton/neutrino
- Generated at range of sextet masses (b) Similar to above for the reverse process with neutrino at the • between 250-5500 GeV


(a) Diagram for production in association with a lepton followed by decay involving a neutrino.


production step.

(c) Diagram for the all-neutrino process.

Backgrounds

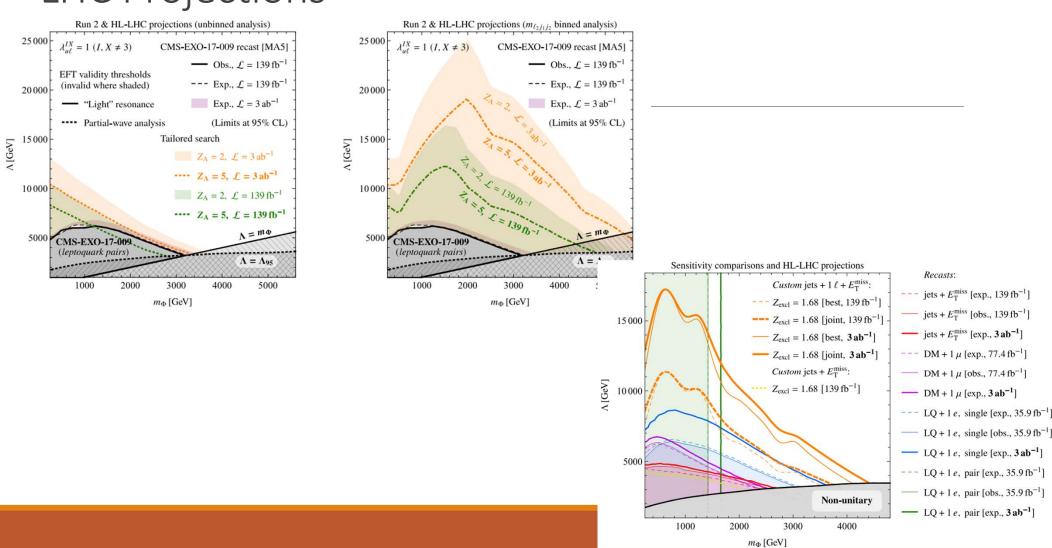


Background process
 $W + jets, W \rightarrow \ell \nu$
Diboson (WW/WZ/ZZ)
tī
$t\bar{t} + Z$
$t\bar{t} + W$
<i>t</i> -channel single top (<i>qt</i>)
tW
$tZ (qt + v\bar{v} \text{ incl. non-resonant } Z)$

Cuts Implemented

Selection criterion	Selection ranges							
Jet multiplicity, N _{jet}	$N_{\rm jet} \ge 2$							
Jet kinematics	$p_{\rm T}(j) > 15 {\rm GeV}, \eta(j) < 2.5$							
Jet kinematics	VETO additional jets with $p_{\rm T} > 500 {\rm GeV}$							
Lepton multiplicity	1 opposite-sign (OS) lepton pair							
	$p_{\rm T}(\ell_1) > 20 { m GeV}, p_{\rm T}(\ell_2) > 15 { m GeV}, \eta(\ell) < 2.$							
Lepton kinematics	VETO additional leptons with $p_{\rm T} > 10 {\rm GeV}$							
Lepton kinematics	VETO OSSF lepton pairs with $m_{\ell\ell} \in [81, 101]$ GeV							
Leading lepton isolation	VETO any jet with $\Delta R(\ell_1, j) < 0.3$							
Missing energy, E ^{miss}	VETO events with $E_{\rm T}^{\rm miss} > 25 {\rm GeV}$							
Leading jet momentum	$p_{\mathrm{T}}(j_1) > 350 \mathrm{GeV}$							
Leading lepton momentum	$p_{\mathrm{T}}(\ell_1) > 300 \mathrm{GeV}$							

Selection criterion	Selection ranges							
Jets, anti- $k_t R = 0.4$	$N_{\text{jet}} \ge 2$							
Jets, and $\kappa_t R = 0.4$	$p_{\rm T}(j) > 100 { m GeV}, \eta(j) < 2.5$							
Charged leptons	$N_{\ell} = 1$							
Charged reptons	$p_{\mathrm{T}}(\ell) > 15 \mathrm{GeV}$							
<i>b</i> -tagged jets	VETO <i>b</i> -jets with $p_{\rm T} > 15 {\rm GeV}$							
Londing ist momente	$p_{\mathrm{T}}(j_1) > 250 \mathrm{GeV}$							
Leading jet momenta	$p_{\rm T}(j_2) > 200 { m GeV}$							
Lepton momentum	$p_{\mathrm{T}}(\ell) > 250 \mathrm{GeV}$							
Missing energy, $E_{\rm T}^{\rm miss}$	Require $E_{\rm T}^{\rm miss} > 300 {\rm GeV}$							
Jet- $E_{\rm T}^{\rm miss}$ separation	$\Delta\phi(j_1, \vec{p}_{\rm T}^{\rm miss}) \notin [2\pi/3, 4\pi/3]$							



Selection criterion	250	500	750	1000	1250	1500	1750	
$N_{\text{jet}} \ge 2$	0.8914	0.9343	0.9501	0.9591	0.9646	0.9373	0.9763	
1 OS lepton pair	0.7718	0.8336	0.8558	0.8680	0.8735	0.8780	0.8824	
No OSSF pairs from Z	0.7661	0.8303	0.8538	0.8661	0.8720	0.8767	0.8813	
$E_{\rm T}^{\rm miss} \le 25 {\rm GeV}$	0.7349	0.7877	0.7963	0.7986	0.8000	0.7946	0.7932	
$p_{\rm T}(j_1) > 350{\rm GeV}$	0.2525	0.3467	0.4568	0.5539	0.6327	0.6795	0.7145	
$p_{\mathrm{T}}(\ell_1) > 300 \mathrm{GeV}$	0.2392	0.3301	0.4269	0.5124	0.5945	0.6486	0.6907	
Best $m_{\ell_2 j_1 j_2}$ [GeV]	200	450	650	900	1200	1400	1700	
Final $m_{\ell_2 j_1 j_2}$ cut	0.2331	0.2745	0.3414	0.3486	0.3953	0.3095	0.2075	

Light signals, $\sqrt{s} = 13$ TeV, labeled by m_{Φ} [GeV]

Binned Selections

Process	Lower bound on $m_T(j_1 j_2, E_T^{\text{miss}})$ [TeV] (recall that m_T bins are non-overlapping)																		
	0.25	<mark>0.5</mark> 0	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3. <mark>0</mark> 0	3.25	3.50	3.75	4. <mark>0</mark> 0	4. <mark>2</mark> 5	4.50	4.75
W + jets, $W \rightarrow \ell v$	58.0	58.0	17 <mark>3.</mark> 9	116.1	347.8	637.6	289.8	173.9	347.8	<mark>347.8</mark>	58.0	58.0	58.0	58.0	58.0	58.0	58.0	58.0	58.0
Diboson (1ℓ)	0.77	0.77	0.77	0.77	0 <mark>.7</mark> 7	0.77	1.54	0.77	0 <mark>.7</mark> 7	0.77	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
$pp \to \ell \Phi \to \ell \nu jj$	10.6	35. <mark>1</mark>	101.8	234.5	<mark>461.</mark> 7	<mark>684</mark> .1	803.4	96.6	47. 8	29.0	22.1	17.0	11.1	3.38	3.88	1.46	1.43	0.48	0.99
$pp \rightarrow v\Phi \rightarrow \ell v j j$	3.04	4.77	17.0	49.9	75.5	75.3	64.4	39.0	25.3	17.1	8.76	5.25	3.08	1.48	1.34	0.80	0.14	0.41	<0.1

LHC Projections

Conclusion

- Identified two new sextet operators with unusual phenomenological signatures
- Examined observable distributions to choose appropriate cuts against the backgrounds
- New proposed search would outperform previously implemented searches at ATLAS and CMS
- Questions?

Clebsh Gordon

$$[t_{6}^{a}]_{s}^{t} = -\{J^{sib} \bar{J}_{tcj} [t_{3\otimes 8}^{a}]_{ib}^{jc}\}^{*}$$
$$J^{sia} = -i\epsilon^{ijk} [t_{3}^{a}]_{i}^{l} \bar{K}^{s}_{lk}$$