

Atmospheric neutrino oscillations with IceCube: Recent results with DeepCore and future potential with the Upgrade

Kayla Leonard DeHolton

IceCube, DeepCore, and the Upgrade

IceCube

- 1 km³ detector located at the South Pole
- 5,160 modules across 86 strings
- Optimized for TeV-PeV

DeepCore

- 8 dedicated strings with denser spacing
- High quantum efficiency modules
- Optimized for GeV
- In operation for more than a decade

Upgrade

- 7 additional strings with denser spacing
- Multi-PMT modules
- Fully-funded & will be constructed in 2025-26

Atmospheric Neutrino Oscillations

- Neutrinos produced in cosmic ray air showers are dominated by $\overline{\nu_{\mu}}$, then $\overline{\nu_{e}}$
- Predominantly ν_{μ} oscillating to ν_{τ}
- Strongest oscillation signal near 25 GeV

Current Generation Samples

- Common:
 - Event selection to suppress backgrounds by several orders of magnitude
 - Improved treatment of many systematic uncertainties
 - Analysis tools
- Then sample specific reconstructions and analyses:

Sub-sample

High quality events

~22k events

Fast reconstructions can only be applied to certain high-quality events

Published last year: PRD 108, 012014 (2023)

Full Sample

High statistical power

~150k events

CNN-based reconstruction [J. Micallef, DOI:10.25335/pg10-es32] can be applied to almost any event

Publication submitted last week: arXiv:2405.02163

- Detector and Ice Properties
 - Improved treatment for modeling the optical properties of ice
 - PMT charge calibration
 - Overall normalizations for neutrinos and muons
 - → In total, about 40 systematic parameters are studied; approx. half are included as nuisance parameters in fit

Kayla Leonard DeHolton \cdot 15 May 2024 \cdot APS DPF, Pittsburgh, PA

Systematic uncertainties considered

- Flux uncertainties
 - Cosmic ray spectrum
 - Pion & Kaon production uncertainties (Barr et al 2006)
- Cross sections
 - DIS transformation between GENIE & CSMS JHEP 08, 042 (2011)
 - Axial mass uncertainties for non-DIS events

0.5

Slide 5

1.0

Latest measurement of atm. oscillation parameters

- High statistics and high purity
 - 150,000 neutrinos
 - >99% purity
- Competitive with long baseline accelerators
- Complementary to accelerator measurements
 - probes higher energies
 - deep inelastic scattering regime
 - above tau lepton production threshold for ν_τ CC
 - different systematics at production and detection

IceCube, DeepCore, and the Upgrade

IceCube

- 1 km³ detector located at the South Pole
- 5,160 modules across 86 strings
- Optimized for TeV-PeV

DeepCore

- 8 dedicated strings with denser spacing
- High quantum efficiency modules
- Optimized for GeV
- In operation for more than a decade

<u>Upgrade</u>

- 7 additional strings with denser spacing
- Multi-PMT modules
- Fully-funded & will be constructed in 2025-26

The IceCube Upgrade

Advantages: Higher density of modules & multi-PMT info

- Lower energy detection threshold
- 3-5 times more events in energy range of interest
- More hits (information) ⇒ better reconstruction and classification

Challenges: Higher rates

- More noise with multi-PMT modules
- Higher background rates

New ML-based tools to address higher rates (GNNs) :

- Very efficient at removing noise
- Very fast to run which can handle the higher rates

GraphNeT Deep Learning for Neutrino Telescopes

Atm. Neutrino Oscillations w/ the IceCube Upgrade

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2\left(2\theta_{23}\right)\sin^2\left(1.27\frac{\Delta m_{32}^2 L}{E}\right)$$

- Combined sensitivities for 12 years of DeepCore + 3 years of Upgrade
- Injected truth value(s) from NuFit 5.2

Tau Neutrino Appearance w/ the IceCube Upgrade

- Constraining the number of detected ν_{τ} via an overall scaling factor " ν_{τ} normalization"
- Current implementation looks for deviations from expectation of unitarity of the PMNS matrix or from the expected ν_τ cross-section
- Current experimental constraints ±25% DeepCore is expected to be about ±10% IceCube Upgrade will get to about ±5%

Expected with the Upgrade: ±15% New string Injected truth: deployment NuFit 5.2 w/o SK $\pm 12.5\%$ σ width ±10% ν_{τ} norm 1 $\pm 7.5\%$ $\pm 5\%$ $\pm 2.5\%$ IC86 IC86 (12 yr) + IC93IceCube preliminary ±0% 11 13 14 15 1012 16 years

Refer to: <u>arXiv:2307.15295</u>

Neutrino Mass Ordering w/ the IceCube Upgrade

- Determining if $v_1 < v_2 < v_3$ (normal ordering) or $v_3 < v_1 < v_2$ (inverted ordering)
- New strings will significantly enhance our sensitivity to NMO
 - 1.5-3 σ sensitivity expected within a few years
 - Strongly depends on the true value of θ_{23}

Summary & Outlook

IceCube DeepCore

- Latest results include almost a decade of DeepCore data
- Provides a unique view of oscillations to complement long baseline experiments
- The most precise measurement of θ_{23} and Δm^2_{32} using atmospheric neutrinos to date

IceCube Upgrade

- Fully-funded and will be constructed in 2025-26
- Significant enhancement in our GeV capabilities
- Latest sensitivity improvements leverage new tools like GNN noise cleaning and reconstruction and combine with 12 years of DeepCore data
- Further improvements are expected when leveraging improvements in calibration, combinations with reactor experiments, and more

Back Up Slides - DeepCore

L/E

Reconstructed Resolutions

Effect of parameters on analysis templates

Results from PRD 108, 012014 (2023)

Comparison to previous DeepCore results:

Atmospheric Neutrinos

- Neutrinos produced in cosmic ray air showers via pions and kaons
- Dominated by ν_{μ} , also some ν_{e}

Flux Systematics

- Nominal Flux: Honda 2015 model [arXiv:1502.03916, PRD 92, 023004]
- Uncertainties:
 - Change in Spectral Index $\Delta \gamma_{\nu}$
 - Barr Parameterization [arXiv:astro-ph/0611266, PRD 74, 094009]

Typical Analysis Procedure

- Remove backgrounds of atmospheric muons and detector noise
- Apply flux + oscillations + cross sections + detector response
- Perform a binned analysis varying physics & nuisance parameters in templates

Back Up Slides - Upgrade

GNN cleaning, reconstruction, and classification

- GraphNeT: Graph neural networks for neutrino telescope event reconstruction
 - Open source framework: <u>https://github.com/graphnet-team/graphnet</u> <u>DOI:10.21105/joss.04971</u>
- Connects each pulse to its 8 nearest neighbor pulses
 - GNNs can easily handle the irregular geometry of the strings
- Used for many tasks
 - Reject noise hits
 - Rejecting backgrounds
 - Reconstructing energy and direction
 - Classifying v event types

Future improvements

- Calibration Devices
 - Bright, isotropic light
 - Directional laser beam
- Further analysis optimizations
 - Event selection
 - Reconstructions and particle ID
 - Analysis binning
- Newer systematics treatment
 - Flux uncertainties Phys. Rev. D 107, 123037 (2023)
 - Ice models
 - DIS cross section treatment

Combining w/ Reactor Experiments

- Synergy effect when combining with reactor experiment
- Future possibility: combining JUNO + IceCube Upgrade + KM3NeT/ORCA

Event distributions with the IceCube Upgrade

Expected event distribution w/ 3 years of Upgrade:

Ratio to no oscillations: