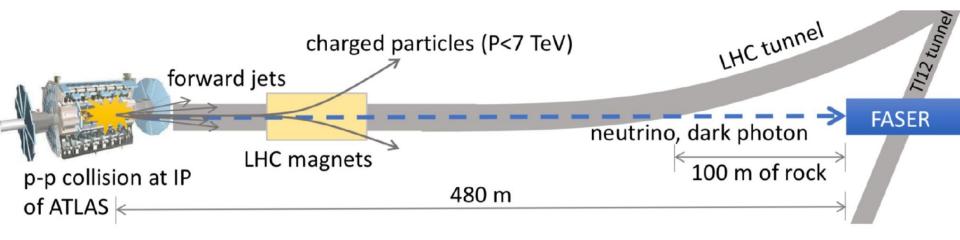
Results From TeV Neutrinos at The FASER Experiment

Ali Garabaglu on behalf of FASER Collaboration May 14th, 2024 DPF-PHENO 2024



ForwArd Search ExpeRiment (FASER) At The LHC

- FASER is designed to search for long lived BSM particles and neutrinos.
- Located 480m from ATLAS interaction point

FASER Detector

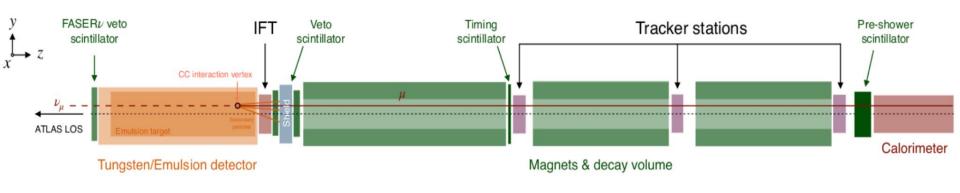
Low cost modular detectors built with both existing and some costume components **Front Scintillator** veto system Three 2mm scintillators Scintillator Tracking spectrometer stations 350x300mm wide 3 layers per station with 8 ATLAS veto system TO ATLAS IP SCT barrel modules in each layer Two 20mm scint. Electromagnetic 300x300mm wide Calorimeter Decay volume 4 LHCb outer **EM** calorimeter modules **FASERy** emulsion Interface detector Tracker (IFT) 1.1 ton detector 730 layers of 1.1mm Trigger / timing tungsten+emulsion scintillator station neutrino target and 10mm thick scintillators tracking detector Magnets with dual PMT readout Provides 8\(\lambda_{int}\) Trigger / pre-shower for triggering and timing 0.57 T dipoles scintillator system measurement (σ =400ps) 200mm aperture detector paper

1.5m decay volume

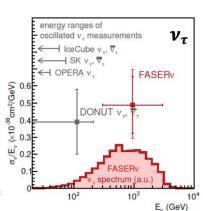
FASER_v Detector

730 emulsion films and 1.1 mm thick tungsten plates.
 1.05 m long with area of 25 x 30 cm². Target mass 1.1 tonnes.

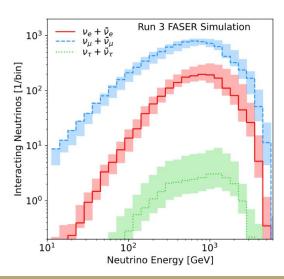
 Emulsion sub-detector is in place for about 2 months. Up to O(10⁶) tracks/cm², with O(10⁷) tracks in the spectrometer triggered while one emulsion detector is in


place.

Recent Physics Results

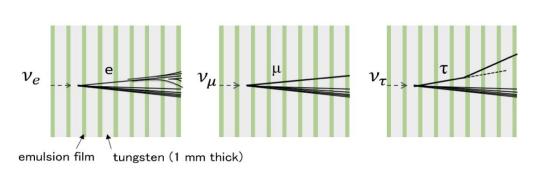

- Search for Dark Photons with FASER, see Ansh's talk. (PLB 848, 2024, 138378).
- First observation of collider neutrinos with FASER With 153 events at 16 σ (PRL.131.031801)
- And in this talk I will focus on first measurement of muon and electron neutrino cross sections at the LHC (<u>Submitted to PRL</u>)

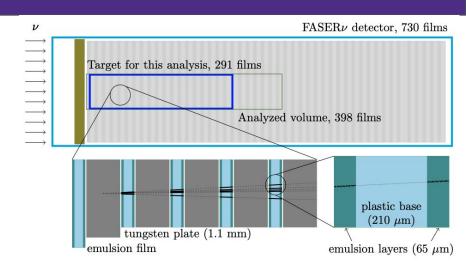
Neutrinos In FASER


- FASERv can probe neutrino cross section measurements in TeV energy range.
- Expect \(\mathcal{O}(1000) \) electron and muon neutrino events.
- <u>Expected energy</u> spectra of <u>electron</u>, <u>muon</u>, and <u>tau</u> neutrinos are shown in colored histograms.

		T-	
Ī	ν_e	0.9 accelerator data	ν_{μ}
FASEF	i I	0.9 accelerator data 0.8 V _μ FASERV 0.7 Co.7 Co.7 Co.7 Co.7 Co.7 Co.7 Co.7 Co	
53 V _e DONUT v _e , ∇ _e	1414-14-	× 0.6 ⇒ 0.5 ∇ _μ 0.4 0.3 0.2	
FASERV	١,	0.1 FASERV	nixed)
10 ² 10 ³	104	0	10 ⁶
10 10	E _v (GeV)		GeV)

Run 3 (250 fb ⁻¹)	$v_{\rm e}$	ν _μ	v _r
expected CC events in FASERν	~1700	~8500	~30

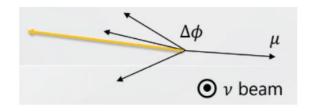

arXiv:2402.13318

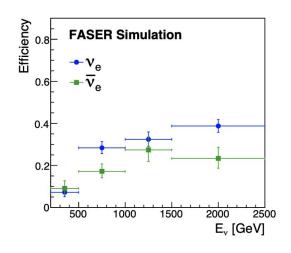


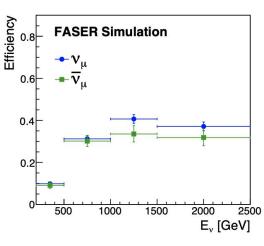
Emulsion Detector

Current analysis:

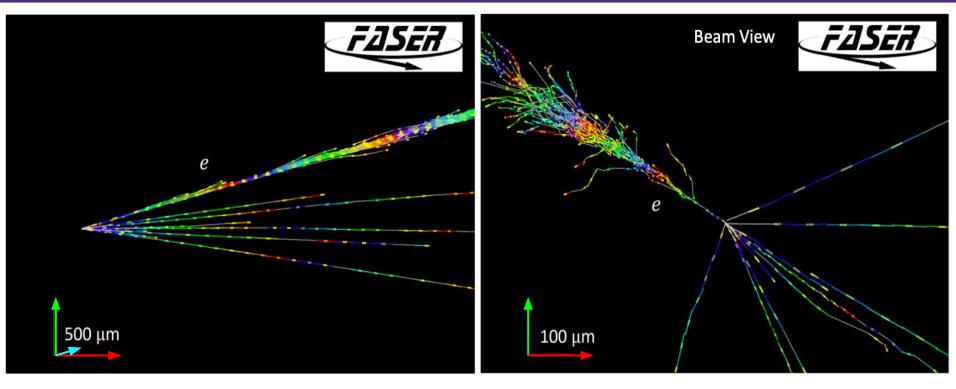
- 9.5 fb⁻¹ from 2022 run
- Analyzed target mass of 128.6 kg. ~1.7% of data collected so far.
- 23.4 cm × 9.0 cm is analysed, and in the longitudinal direction, 41.5 cm
- Neutrino events can be flavour tagged using topological and kinematical variables.



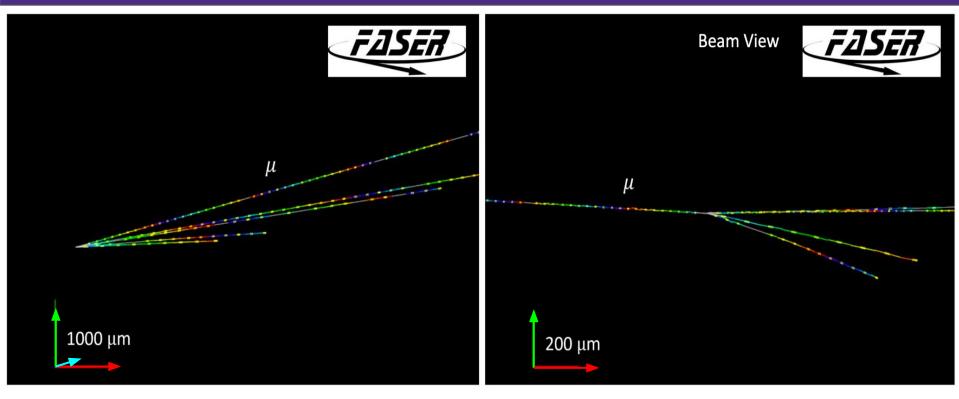

Emulsion Physics Analysis


Main Event Selection Criteria:

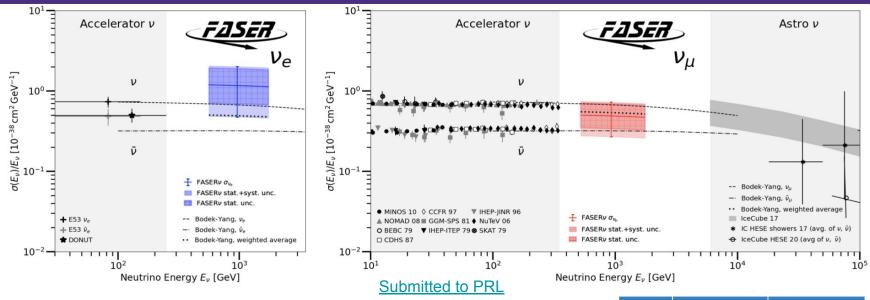
- Vertex reconstruction:
 - N_{tracks} (tan $\theta \le 0.5$) ≥ 4
 - N_{tracks} (tan $\theta \le 0.1$) ≥ 3
- Lepton requirements
 - \blacksquare E_e or p_u > 200 GeV
 - \blacksquare $\tan \theta_e$ or $\tan \theta_u > 0.005$
- Back-to-back topology: $\Delta \phi > 90^{\circ}$



- The main background: neutral hadrons interacting in the detector or concrete.
 - Mostly lower in energy.
 - Can be suppressed with topological and kinematic cuts



Electron Neutrino Candidate


- Coordinate system: red, green, and blue axes indicating the x (horizontal), y (vertical), and z (beam) direction
- The highest reconstructed electron energy from neutrino interaction, with energy of 1.5 TeV, was observed.

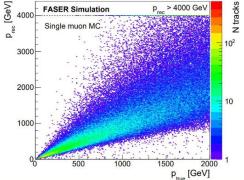
Muon Neutrino Candidate

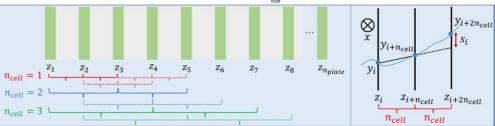
- Coordinate system: red, green, and blue axes indicating the x (horizontal), y (vertical), and z (beam) direction
- Muon neutrino candidate

Cross Section Measurement

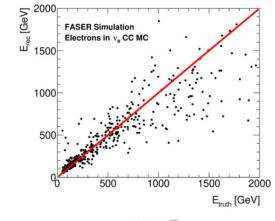
- First measurement of TeV scale neutrino cross sections at an accelerator.
- Both measurements are consistent with the Standard Model

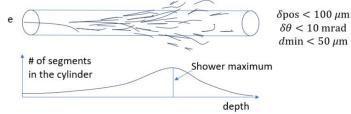
	V _e	$ u_{\mu}$
Bkg	0.03 ± 0.01	0.22 ± 0.08
Ехр	1.1 - 3.3	6.5 – 12.4
Obs	4	8
Sig	5.2σ	5.7σ

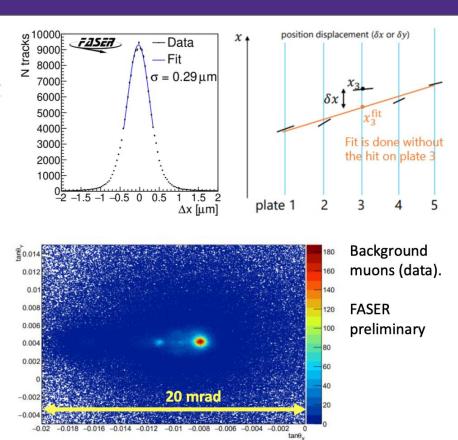

Summary


- FASER and FASERv have successfully taken data and produced great results, including measurements of neutrino cross section at previously unexplored energy scales.
- The findings from FASER ν showcase the capability of conducting neutrino measurements using **emulsion-based detectors** under the demanding conditions present at the LHC.
- There is still **more data** to be reconstructed and analysed by FASER_v. And more data to be taken by FASER in current run.
- Future Outlook:
 - FASER approved for Run 4.
 - The Forward Physics Facility (FPF) at CERN is a planned project aimed at constructing a new experimental cavern during the HL-LHC era to enhance the physics program, which will include FASER2 and FASERv2. See talks by <u>Jonathan Lee Feng</u> and <u>Shih-Chieh Hsu</u>

BackUp


FASERv Kinematic Measurements


- Particle momenta calculated using Multiple Coulomb Scattering (MCS) via the Coordinate Method (works well even > 1 TeV).
- Muon momentum: ΔP^{RMS}/P ≈ 0.3 at 200 GeV.


- EM shower energy found using track multiplicity.
- Reconstructed electron energy: ΔE/E ≈ 0.25 at 200 GeV.

FASERv Performance

- Position resolution is determined using the position displacement between a hit and the linear fit of a track.
- Hit resolution \sim 300 nm after dedicated film alignment using high-momentum muon tracks ($\mathcal{O}(10^5)$ tracks/cm²).
- Angular resolution for track of length
 1 cm is ~ 0.04 mrad.
- Angular spread of muon peaks ~ 0.4 mrad.

