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• Dark Matter particle   (~1 GeV)χ

• Ultralight scalar mediator ϕ

• Attractive Yukawa Potential between DM particles

• Body of DM particles source classic potential

• Contact interaction with the SM 

Dark Matter Model
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• Effective capture radius increases 

• Relativistic boost at surface 

Difference from Usual Dark Kinetic Heating
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DM Accumulation and Heating

Flux Effective Area Probability for capture 
(More on this later)

eκt

κ = α × f(λ, M, R, . . . )

Tχ ∝ eκt
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• Exponential dependence on coupling strength 
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• Upper limit on changing force range
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• Coldest known Super-Jupiter 

• Implies constraints:
 α ≤ 3.7 × 10−27 − 8.6 × 10−26

λ ≤ (90 − 100)RJupiter

• If older than expected, could 
also be modeled as a positive 
signal
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• Higher density probes weaker couplings 

• Can give insight into DM density profile

Heating Traces DM Density

 M = 35 − 55 MJupiter R = RJupiter Age = 10 Gyr

λ = 100RJupiter

99% Capture

Local 
Position
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• Striking and easily detectable Dark kinetic heating signals 

• Can already make exclusions

• Sharp probe of the galactic DM distribution 

• DM capture is extremely efficient 

• Probe of very small DM-SM cross sections

• Various objects can be used to observe complementary regions 
of parameter space

Summary
In the presence of a long range force between DM particles…
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• Energy lost must be less than KE at infinity 

• If  scatters are required, the probability for capture 

•  is the roughly given by a poisson distribution

ns

Pn

Capture Probability

∑ ≤

Pcap = 1 −
ns−1

∑
n=0

Pn(σχn, M, R)



Thermalization Timescales



Cross Section for 99% Capture
λ = 100RJupiter

Nχ ≈ 1044


