A Common Origin for the QCD Axion and Sterile Neutrinos from SU(5) Strong Dynamics

arXiv:2310.08557 [hep-ph] 1

Arpon Paul

University of Minnesota

May 13, 2024

¹doi:10.1007/JHEP12(2023)180

Outline

Strong CP problem

PQ Solution

Axion Quality Problem

Origin of Neutrino Mass

Common Origin for QCD axion and neutrino mass

Conclusion

References

Strong CP problem

In principle, the QCD Lagrangian can contain the following term:

$$\mathcal{L} \supset \theta \, \frac{g_s^2}{32\pi^2} \, G^a_{\mu\nu} \, \widetilde{G}^{a\,\mu\nu} \,, \tag{1}$$

where,
$$\widetilde{G}^{a\,\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} G^{a}_{\alpha\beta}$$
.

- This term (i) is Lorentz-invariant (ii) gauge-invariant
 (ii) has mass dimension-4 (hence, renormalizable)
- The θ-term breaks CP (charge conjugation + parity) symmetry.

$$G\widetilde{G} \longrightarrow -G\widetilde{G}$$
 (2)

Strong CP problem

A non-zero neutron electric dipole moment (EDM) also breaks CP :

> Figure 1: C, P and T transformations of the neutron EDM (d) and magnetic moment (μ).

• The neutron EDM is proportional to the θ parameter:

$$d_n = |\theta| \times 2.4 \cdot 10^{-16} \, e \cdot \mathrm{cm} \,. \tag{3}$$

► The current experimental bound on the neutron EDM $d_n < 0.18 \times 10^{-25} e \cdot cm$.

• This sets an upper bound: $\theta < 10^{-10}$.

Strong CP Problem

▶
$$\theta < 10^{-10}$$
.

• Why is
$$\theta$$
 so small?

• This is known as the strong CP problem.

PQ Solution - Overview

Add a dynamical real scalar field field a(x):

$$\mathcal{L} \supset \frac{1}{2} \left(\partial_{\mu} \mathbf{a} \right) \left(\partial^{\mu} \mathbf{a} \right) + \frac{g_{s}^{2}}{32\pi^{2}} \left(\theta + \frac{\mathbf{a}(x)}{f_{a}} \right) G_{\mu\nu}^{a} \widetilde{G}^{a \, \mu\nu} \,. \tag{4}$$

The effective axion potential induced by QCD is obtained -

$$V_{\rm eff}(a) \sim -m_a^2 f_a^2 \cos\left(heta + rac{a(x)}{f_a}
ight),$$
 (5)

Figure 2: QCD induced effective potential $V_{\text{eff}}(a)$ of the axion as a function of $\frac{a(x)}{f_a} + \theta$.

V_{eff}(a) has a minimum at ^{a(x)}/_{f_a} + θ = 0, hence dynamically fixing the CP-violating term to zero.

π

PQ Mechanism - few important points

- ▶ Introduce a **global**, **chiral** $U(1)_{PQ}$ symmetry.
- $U(1)_{PQ}$ transformations of a PQ-charged complex scalar Φ :

Φ-

$$\rightarrow e^{i\alpha} \Phi.$$
(6)
1)PQ
ial:
$$\int_{Im \Phi}^{2} e^{i\alpha} \Phi.$$

Spontaneous breaking of U(1)_{PQ} with the VEV of the potential:

$$V(\Phi) = \lambda \left(\Phi^{\dagger} \Phi - f_a^2 \right)^2$$
$$\Rightarrow \langle \Phi \rangle = f_a$$

Reparametrize Φ:

$$\Phi(x) = f_a e^{i a(x)/f_a}$$
(7)

PQ symmetry of the NG boson a(x):

$$\frac{a(x)}{f_a} \longrightarrow \frac{a(x)}{f_a} + \alpha \,. \tag{8}$$

Axion Quality Problem

- Recall that U(1)_{PQ} is a global symmetry.
- U(1)_{PQ} needs to be anomalous under SU(3)_c to generate the QCD induced effective potential, hence cannot be gauged.
- Quantum gravity should explicitly break the global U(1)_{PQ} symmetry. Generically,

$$\mathcal{L} \supset |c| e^{i\delta} \cdot \frac{\Phi^n}{M_{\text{Pl}}^{n-4}} + \text{h.c.},$$
 (9)

The above Planck suppressed operator modifies the axion potential:

$$V_{\rm eff}(a) \simeq -m_a^2 f_a^2 \cos\left(\theta + \frac{a}{f_a}\right) + |c| \frac{f_a^n}{M_{\rm Pl}^{n-4}} \cos\left(\frac{a}{f_a} + \delta\right)$$
(10)

Axion Quality Problem

The potential minimum is shifted by,

$$\Delta \theta \sim \delta \left(\frac{f_a}{M_{\rm Pl}}\right)^{n-4} \left(\frac{f_a}{m_a}\right)^2 \tag{11}$$

$$\bullet \quad \theta < 10^{-10} \quad \Rightarrow \boxed{n \gtrsim 8} \qquad (\text{assuming } f_a \gtrsim 10^8 \text{ GeV})$$

Why is the global symmetry of U(1)_{PQ} protected from quantum gravity corrections up to n ≥ 8?

Origin of Neutrino Mass

- In the Standard Model, gauge invariance does not allow a mass term for the left-handed (active) neutrino.
- ▶ However, neutrino oscillation experiments set a bound on the neutrino mass $m_{\nu} \gtrsim 0.05 \text{ eV}$.
- Introduce right-handed sterile neutrinos with a heavy Majorana mass, m_R.
- This allows a Dirac mass (m_D) term in the Lagrangian,

$$\mathcal{L} \supset m_D \nu_L^{\dagger} \nu_R + \frac{1}{2} m_R \nu_R \nu_R + \text{h.c.}, \qquad (12)$$
$$= \frac{1}{2} \begin{pmatrix} \nu_L^{\dagger} & \nu_R \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} \nu_L^{\dagger} \\ \nu_R \end{pmatrix} + \text{h.c.} \qquad (13)$$

▶ Eigenvalues: m_D^2/m_R , m_R (assume: $m_R \gg m_D$)
 ▶ Assuming $m_D \simeq m_e = .51 \, MeV$, we obtain $m_R \lesssim 10^{12} \, GeV$.

Common Origin for QCD axion and neutrino mass

▶ The axion decay constant, $f_a \gtrsim 10^8 \text{ GeV}$ (SN1987A observations)

• Majorana mass of neutrino, $m_R \lesssim 10^{12} \text{ GeV}$.

• Consider an SU(5) strong dynamics to naturally relate f_a and m_R .

The SU(5) gauge invariance will protect PQ symmetry from quantum gravity up to a higher dimensional operator.

SU(5) Chiral Gauge Theory ²

Table 1: Representations of the SU(5) chiral fermions under gauge symmetry

	Ga	Global	
	SU(5)	$SU(3)_c$	$U(1)_{\rm PQ}$
$\psi_{\overline{5}}$		${\sf R}_\psi$	-3/5
ψ_{10}		${\sf R}_\psi$	+1/5

This PQ charge assignment sets U(1)_{PQ} symmetry SU(5)-anomaly free.

²M. B. Gavela, M. Ibe, P. Quilez, and T. T. Yanagida, Automatic Peccei–Quinn symmetry, Eur. Phys. J. C 79, 542 (2019), arXiv:1812.08174 [hep-ph].

Composite Axion

The SU(5) confinement scale Λ₅ ~ Nf_a. (N is the QCD anomaly coefficient - depends on the QCD rep R_ψ)

The lowest dimension SU(5)-singlet operators that carry PQ charge contain six fermions and are dimension-9:

$$\begin{split} \Phi_{\mathrm{PQ},1} &\equiv \psi_{\bar{5}} \, \psi_{\bar{5}} \, \psi_{10} \, \psi_{\bar{5}} \, \psi_{\bar{5}} \, \psi_{10} \, , \\ \Phi_{\mathrm{PQ},2} &\equiv \psi_{\bar{5}} \, \psi_{\bar{1}0}^{\dagger} \, \psi_{10}^{\dagger} \, \psi_{\bar{5}} \, \psi_{\bar{1}0}^{\dagger} \, \psi_{10}^{\dagger} \, , \\ \Phi_{\mathrm{PQ},3} &\equiv \psi_{\bar{5}} \, \psi_{\bar{5}} \, \psi_{10} \, \psi_{\bar{5}} \, \psi_{\bar{1}0}^{\dagger} \, \psi_{10}^{\dagger} \, , \\ \Phi_{\mathrm{PQ},4} &\equiv \psi_{\bar{5}} \, \psi_{\bar{5}} \, \psi_{\bar{5}} \, \psi_{\bar{5}} \, \psi_{\bar{5}}^{\dagger} \, \psi_{\bar{1}0}^{\dagger} \, . \end{split}$$
(14)

The explicit PQ-breaking term at Planck scale:

$$\mathcal{L}_{PQ} = \frac{c_{PQ}}{4\pi} \frac{1}{M_{\rm Pl}^5} \psi_{\bar{5}} \psi_{\bar{5}} \psi_{10} \psi_{\bar{5}} \psi_{\bar{5}} \psi_{10} + \text{h.c.}, \qquad (15)$$

Composite Axion

The displacement of axion potential minimum:

$$|\Delta \theta| \sim |\mathrm{Im}(c_{\mathrm{PQ}})| \mathcal{N}^8 \left(\frac{f_a}{M_{\mathrm{Pl}}}\right)^5 \left(\frac{f_a}{m_a}\right)^2$$
. (16)

▶ A solution to the axion quality problem requires $10^8 \leq f_a/\text{GeV} \leq 10^9$. [assuming $|\text{Im}(c_{PQ})| \in (0.001, 1)$]

Composite Neutrino

 QCD singlet 3-fermion bound states which will be realized as RH neutrino:

$$N_1 \equiv \psi_{\bar{5}}^{\dagger} \psi_{\bar{5}}^{\dagger} \psi_{10}^{\dagger} \,, \tag{17}$$

$$N_2 \equiv \psi_5^{\dagger} \psi_{10} \psi_{10} \,, \tag{18}$$

The EFT operators to generate Dirac mass at EFT scale Λ_L > Λ₅:

$$\mathcal{L}_{\mathsf{EFT}} = \frac{\widetilde{\xi}_{ij}}{\Lambda_L^3} L_i H \left(\psi_{\bar{5}} \psi_{\bar{5}} \psi_{10} \right)_j + \frac{\widetilde{\xi}'_{ij}}{\Lambda_L^3} L_i H \left(\psi_{\bar{5}} \psi^{\dagger}_{10} \psi^{\dagger}_{10} \right)_j + \mathsf{h.c.} ,$$
(19)

Below the SU(5) resonance scale Λ₅:

$$\mathcal{L} = \xi_{ik}\xi_{jk} \left(\frac{\Lambda_5^3}{\Lambda_L^3}\right)^2 \frac{1}{\Lambda_5} (L_i H) (L_j H) e^{-2ia/f_{\rm PQ}} + \text{h.c.}, \quad (20)$$

Composite Neutrino

 After electroweak symmetry breaking, this generates Majorana masses for the neutrinos,

Figure 3: EFT scale Λ_L versus f_a in the heavy sterile neutrino model with an active neutrino mass $m_{\nu,3}^{\text{active}} = 0.05 \,\text{eV}$.

UV completion of operator $LH\psi\psi\psi\psi$

• Introduce two massive scalar fields ϕ and ϕ_2 with $m_{\phi}, m_{\phi_2} \gg \Lambda_5$

Table 2: Representations of the fields in the UV completion of the heavy sterile neutrino scenario.

	<i>SU</i> (5)	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$U(1)_{PQ}$
$\psi_{\overline{5}}$		${\sf R}_\psi$	1	0	-3/5
ψ_{10}		${\sf R}_\psi$	1	0	1/5
ϕ		${\sf R}_\psi$	1	0	2/5
ϕ_2		${\sf R}_\psi$		-1/2	2/5
L	1	1		-1/2	1
Н	1	1		1/2	0

UV completion of operator $LH\psi\psi\psi$

The interaction Lagrangian in UV

$$\mathcal{L} = y_{\overline{5}}\psi_{\overline{5}}\psi_{10}\phi + \frac{1}{2}y_{10}\psi_{10}\psi_{10}\phi^{\dagger} + y_{2}L\psi_{\overline{5}}\phi_{2}^{\dagger} + m_{12}\phi\phi_{2}^{\dagger}H^{\dagger} + \text{h.c.},$$
(22)
$$(22)$$

$$(22)$$

$$(22)$$

$$(22)$$

(a) $\psi_{\bar{5}}\psi_{\bar{5}}\psi_{10}LH$ (b) $\psi_{\bar{5}}\psi_{10}^{\dagger}\psi_{10}^{\dagger}LH$

• Integrating out ϕ and ϕ_2 , the effective Lagrangian:

$$\mathcal{L}_{eff} = \frac{y_{\bar{5}}y_2 m_{12}}{m_{\phi}^2 m_{\phi_2}^2} H(L\psi_{\bar{5}})(\psi_{\bar{5}}\psi_{10}) + \frac{1}{2} \frac{y_{10}y_2 m_{12}}{m_{\phi}^2 m_{\phi_2}^2} H(L\psi_{\bar{5}})(\psi_{10}^{\dagger}\psi_{10}^{\dagger}) + \text{h.c.} \quad (23)$$

Alternative: Light Sterile Neutrino

- Introduce elementary, massless, right-handed neutrinos ν_R with PQ charge -1.
- ▶ No Majorana mass term for ν_R in UV (due to PQ symmetry)
- Below EFT scale Λ_R (assuming $\Lambda_5 < \Lambda_R < M_{\text{Pl}}$):

$$\mathcal{L}_{\mathsf{EFT}} = \frac{\tilde{\zeta}_{ij}}{\Lambda_R^2} \nu_{R,i} \left(\psi_5^{\dagger} \psi_5^{\dagger} \psi_{10}^{\dagger} \right)_j + \frac{\tilde{\zeta}_{ij}'}{\Lambda_R^2} \nu_{R,i} \left(\psi_5^{\dagger} \psi_{10} \psi_{10} \right)_j + \mathsf{h.c.} ,$$
(24)

• Below scale Λ_5 , the neutrino mass term becomes:

$$\mathcal{L} = y_{\nu}^{ij} \frac{v}{\sqrt{2}} \nu_{L,i}^{\dagger} \nu_{R,j} + \frac{1}{2} m_R^{ij} \nu_{R,i} \nu_{R,j} e^{2ia/f_{PQ}} + \text{h.c.}$$
(25)

with

$$m_R^{ij} \sim \zeta_{ik} \zeta_{jk} \left(\frac{\Lambda_5}{\Lambda_R}\right)^4 \Lambda_5 ,$$
 (26)

Alternative: Light Sterile Neutrino

Figure 4: EFT scale Λ_R versus f_a in the light sterile neutrino model with an active neutrino mass $m_{\nu,3}^{\text{active}} = 0.05 \text{ eV}$.

Conclusion

- In the light sterile neutrino model, sterile neutrinos of mass scale ranging from eV to TeV can be generated.
- This model naturally relates axion decay constant f_a and sterile neutrino mass m_R.
- Solves axion quality problem since the Planck-scale violation appears at mass dimension 9.
- A first order SU(5) phase transition could give rise to GW signal associated with the PQ scale (i.e, ~ 10⁸ GeV) [Von Harling et al., 2020].
- ▶ Predicts a coupling between axion and neutrino ⇒ effects in neutrino oscillations within local DM axion halo [Gherghetta and Shkerin, 2023].

Thank you!

References

A common origin for the QCD axion and sterile neutrinos from SU(5) strong dynamics.

JHEP, 12:180.

Gavela, M. B., Ibe, M., Quilez, P., and Yanagida, T. T. (2019). Automatic Peccei–Quinn symmetry. *Eur. Phys. J. C*, 79(6):542.

Gherghetta, T. and Shkerin, A. (2023). Probing the Local Dark Matter Halo with Neutrino Oscillations. *arXiv:2305.06441*.

Von Harling, B., Pomarol, A., Pujolàs, O., and Rompineve, F. (2020). Peccei-Quinn Phase Transition at LIGO. JHEP, 04(2020):195.

Backup slide: UV completion of $\nu_R \psi \psi \psi$

	<i>SU</i> (5)	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$U(1)_{PQ}$
$\psi_{\overline{5}}$		${\sf R}_\psi$	1	0	-3/5
ψ_{10}		${\sf R}_\psi$	1	0	1/5
ϕ		${\sf R}_\psi$	1	0	2/5
ν_R	1	1	1	0	-1
L	1	1		-1/2	-1
Н	1	1		1/2	0

Backup slide: UV completion of $\nu_R \psi \psi \psi$

Interaction term in the UV Lagrangian:

$$\mathcal{L} = y_{\nu} L^{\dagger} H^{\dagger} \nu_{R} + y_{\overline{5}} \psi_{\overline{5}} \psi_{10} \phi + \frac{1}{2} y_{10} \psi_{10} \psi_{10} \phi^{\dagger} + y_{R} \nu_{R} \psi_{\overline{5}}^{\dagger} \phi + \text{h.c.} ,$$
(27)

• Integrating out the massive scalar ϕ ,

$$\mathcal{L}_{\text{eff}} = \frac{y_{\bar{5}} y_R}{m_{\phi}^2} (\nu_R \psi_{\bar{5}}^{\dagger}) (\psi_{\bar{5}}^{\dagger} \psi_{10}^{\dagger}) + \frac{1}{2} \frac{y_{10} y_R}{m_{\phi}^2} (\nu_R \psi_{\bar{5}}^{\dagger}) (\psi_{10} \psi_{10}) + \text{h.c.}, \quad (28)$$