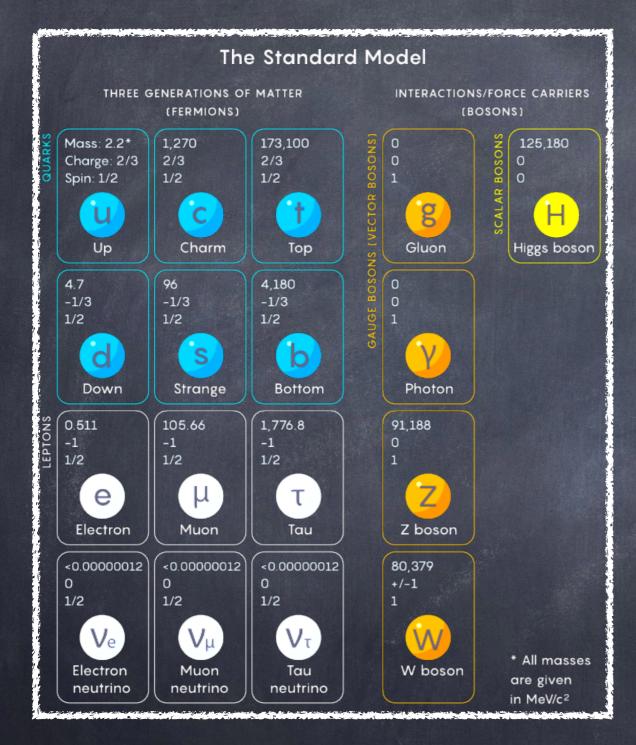


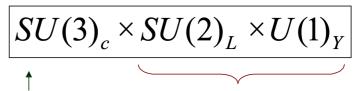

### Composite Topological Structures in SO(10)

Published in: <u>JHEP 05 (2023), 119</u> Authors: <u>George Lazarides, Qaisar Shafi, Amit Tiwari</u>

#### Amil Tiwari


Department of Physics and Astronomy University of Delaware

Talk prepared for DPF-PHEN0-2024


### Molivalion

- SO(10) is a prominent example of grand unified theories (GUT) that provide unification at high scales  $(M_{GUT} = 10^{16} \ GeV)$  of the Standard Model 'forces' (strong, weak and electromagnetic) and 'elementary matter' (quarks and leptons).
- ${\rm \circ}$  It's spontaneously broken at  $M_{GUT}$  to the SM, which is hard to test in collider physics.
- This paper studies the existence of new topological structures which can be produced during the phase transitions that occurred in the early universe.
- Large detectors such as PTA, LIGO-VIRGO, LISA, Einstein telescope will test.

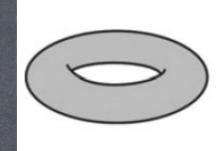
Standard Model



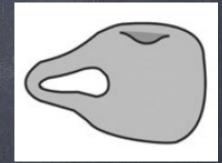
Gauge group of the Standard Model (SM)



QCD - strong interactions involving 'colored' quarks & gluons Electromagnetic and weak interactions mediated by  $W^{\pm}$ ,  $Z^{0}$  bosons and  $\gamma$ , which have been found


Note: there are no stable topological structures in SM.

#### Lie group as Topological space


- Topology is the mathematical study of the properties of spaces that are preserved under continuous deformations. Eg: Donut and Cup are topology equivalent.
- SU(2) is the Lie group of  $2 \times 2$  unitary matrices with determinant of +1.
- SU(2) has the topology of three sphere. Its
  parameters span this space (live in this space).
- $\odot$  If I draw a circle on this sphere, I can collapse it to a point, SU(2) is simply connected.



Attribution: Salix alba at English Wikipedia





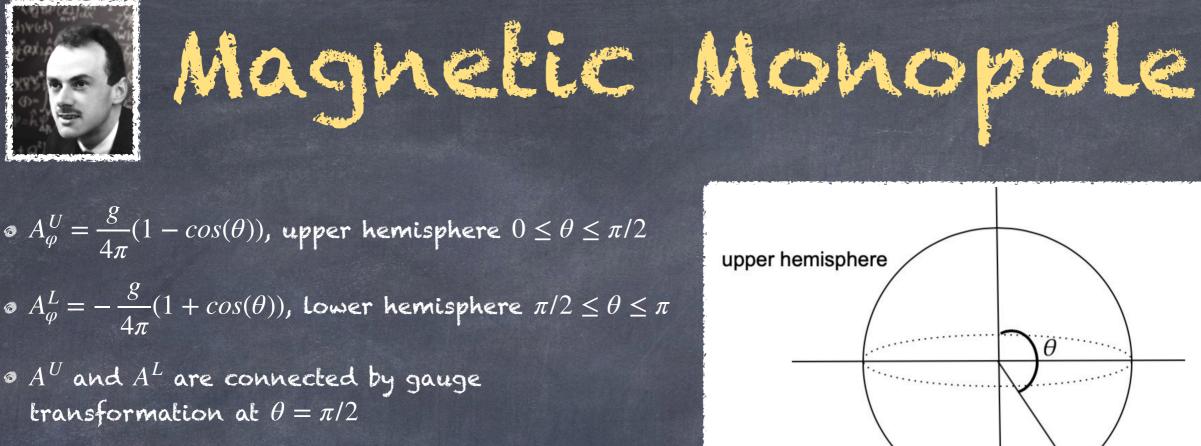




#### Lie group as Topological space

SO(3) is a special orthogonal group in dimension 3 (also called group of all rotations). SO(3) is same as 3-sphere with antipodal points identified. A closed loop on it cannot be contracted to a point.

SO(10) is a special orthogonal group in dimension 10.


 SO(10) is not simply connected, but has the simply connected covering group Spin(10).

A = A'

### Topological structures

The Quarks, leptons, gauge bosons are point particles in SO(10) and SM.

- Spontaneous SO(10) breaking predicts extended topological structures.
- Such structures expected from phase transitions during cooling of the universe, similar to phase transitions and structure production in condensed matter physics.
- The energy scale (mass, mass per unit length or area) is related to the symmetry breaking scale at which the structure arises.



ransformation at 
$$\theta = \pi/2$$
  
$$A_{\varphi}^{U}(\theta = \pi/2) - A_{\varphi}^{L}(\theta = \pi/2) = \frac{2g}{4\pi} = \frac{1}{ie}(\partial\Omega)\Omega^{-1},$$

where  $\Omega(\phi) = exp[i2eg\phi/4\pi]$ 

 $\circ$  For  $\Omega(\phi)$  to be single-valued it follows,

 $\circ$   $A^U$  and  $A^L$  are connected by gauge

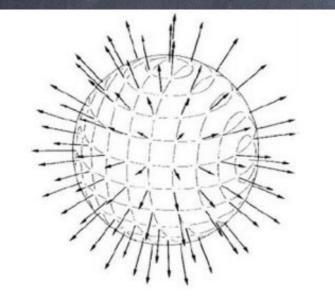
 $\frac{eg}{4\pi} = \frac{n}{2}$ 

Dirac quantization condition

 $g = \frac{2\pi n}{2\pi n}$ 

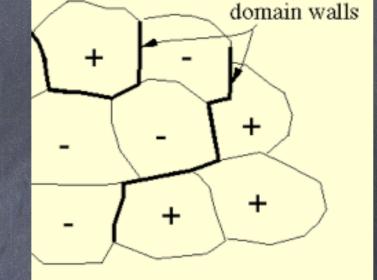
Mapping of equatorial circle to the U(1) gauge transformation is denoted by homotopy group  $\pi_1(U(1)) = Z$  (set of integers).

lower hemisphere


This mapping is more subtle when we have SM unbroken symmetry group  $SU(3)_c \times U(1)_{em}$ 

Symmetry breaking  $G \rightarrow H$ 

second homotopy group  $\pi_2(G/H)$ 

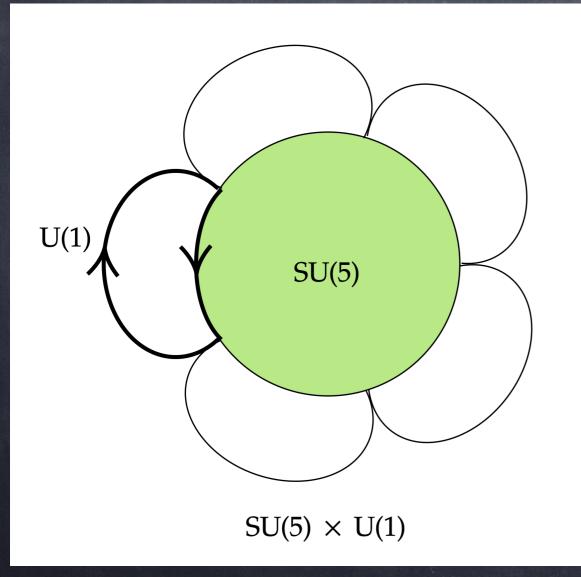

First homotopy group  $\pi_1(G/H)$ 

#### Zeroth homotopy group $\pi_0(G/H)$



Mapping from the 2sphere at spatial infinity to the vacuum manifold. Eg: Monopole  $\langle \Phi \rangle = \eta_v e^{i\theta}$   $|\Phi| = 0$  $\theta$   $|\Phi| = \eta_v$ 

Mapping from the circle at spatial infinity to the vacuum manifold. Eg: cosmic string; vortex in superfluid



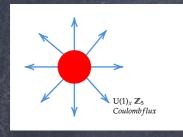

If a discrete symmetry is spontaneously broken we produce domain walls that separate the distinct vacua.

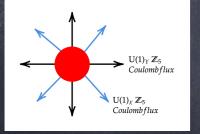
In our SO(10) paper, we showed a large number of composite structures are produced from these basic building blocks.

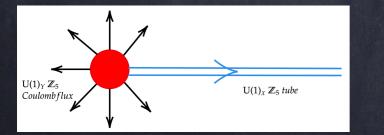
Symmetry breaking  $G \rightarrow H$ 

### $SO(10) \longrightarrow SU(5) \times U(1)_{\chi}$




Theorem:  $\pi_n(G/H) = \pi_{n-1}(H)$  if G is simply connected. We use covering group G = Spin(10) for SO(10).

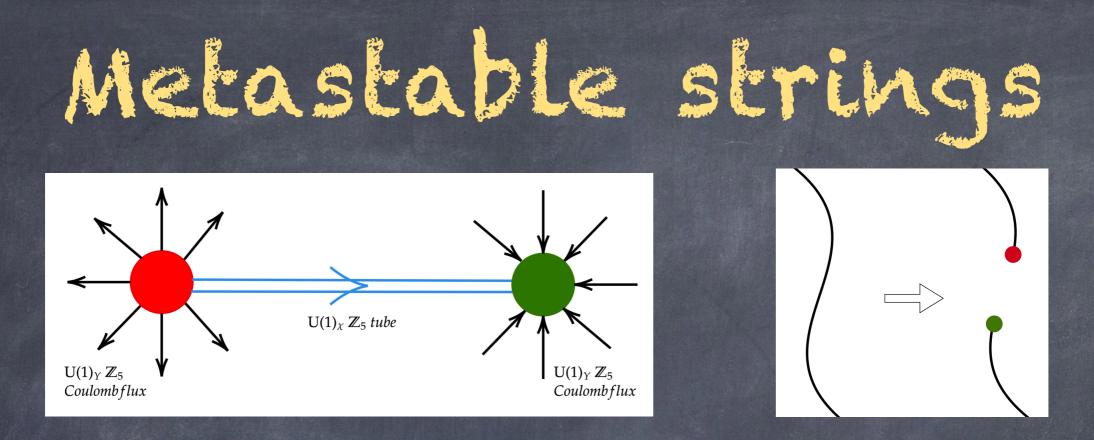

> We study  $\pi_2(G/H) = \pi_1(SU(5) \times U(1)_{\chi})$


The monopole with minimal U(1)magnetic charge is associated with a loop that winds only one-fifth around U(1).

### Melascable strings

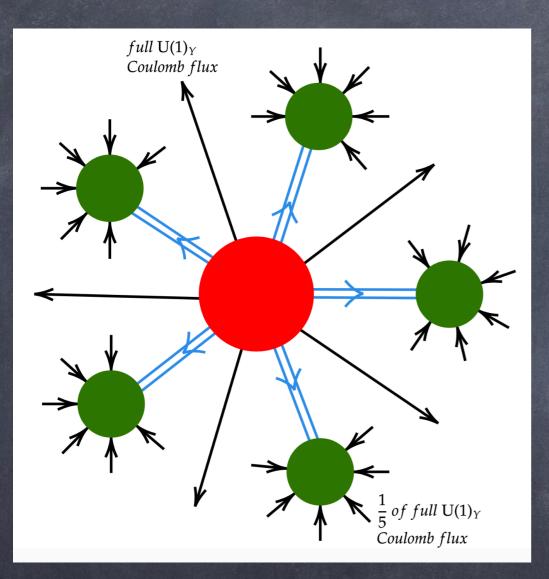
 $SO(10) \longrightarrow SU(5) \times U(1)_{\chi}$  $\longrightarrow SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y} \times U(1)_{\chi}$  $\longrightarrow SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$ 





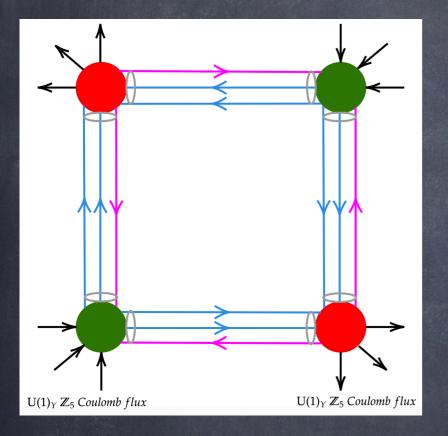



• First breaking: SO(10) monopole appears carrying SU(5) and  $U(1)_{\gamma}$  charges.


 $\odot$  Second breaking: SO(10) monopole produced at the first step ends up with a combination of  $U(1)_{\chi}$  and  $U(1)_{Y}$  Coulomb magnetic fields.

• Third step spontaneously breaks  $U(1)_{\chi}$ , which means the flux is confined in a tube (analog to Meissner effect in superconductor).

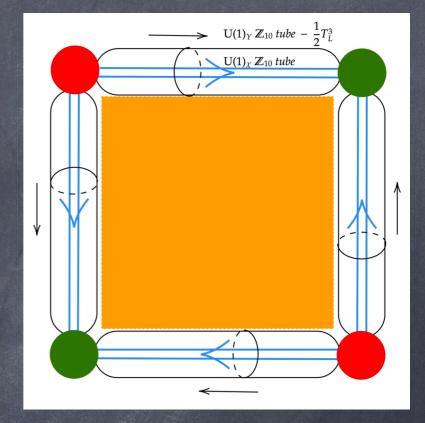



- We finally end up with a dumbbell configuration as shown here. To get a finite energy configuration it should end on antimonopole (magnetic analog of QCD quark-antiquark).
- Long tube could break through quantum mechanical tunneling of monopole-antimonopole pair.
- Emit gravitational radiation over a wide frequency range which can be tested in a variety of experiments including pulsar timing array and LIGO-VIRGO.

### starfish

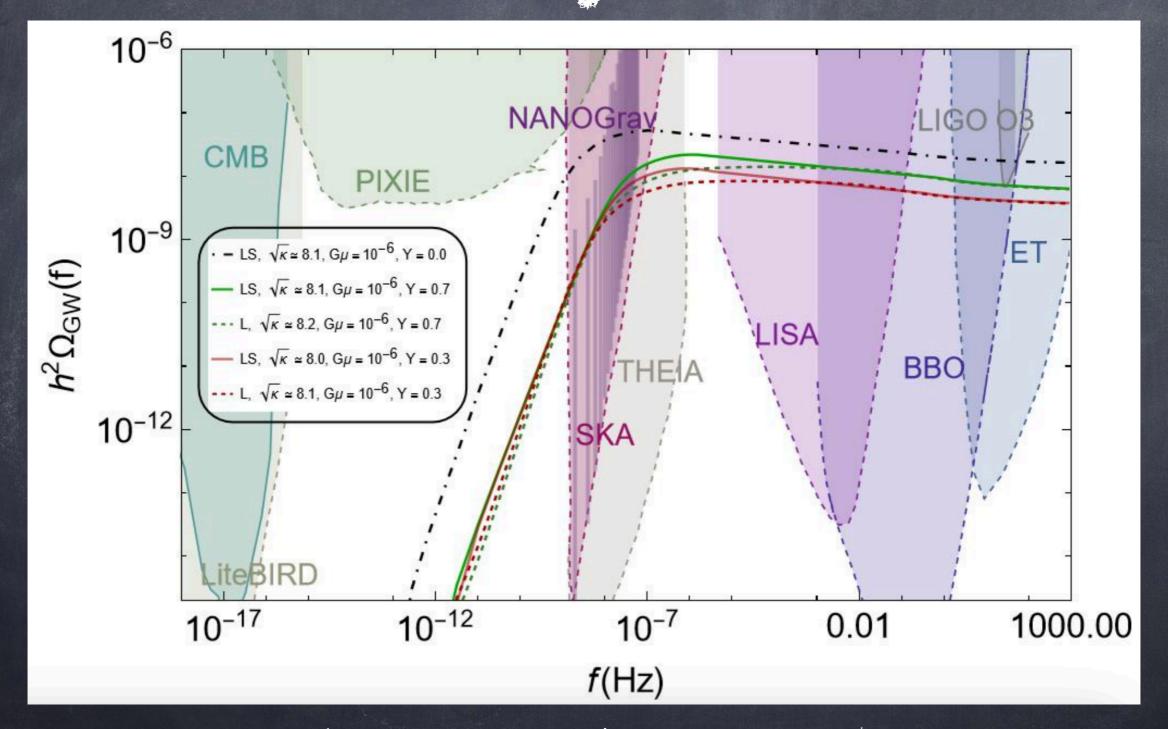



Taking five SO(10) monopoles together we get a multimonopole configuration with full  $U(1)_{\chi}$  and  $U(1)_{\gamma}$  Coulomb fluxes corresponding to  $2\pi$  rotations about these two abelian groups. We named this new configuration 'Starfish'.


#### Domain walls bounded by Necklace



The group  $U(1)_{\chi}$  is broken to its  $Z_{10} = Z_5 \times Z_2$  subgroup. Necklace of monopoles (red) and antimonopoles (green) connected by  $U(1)_{\chi}Z_{10}$  tubes.



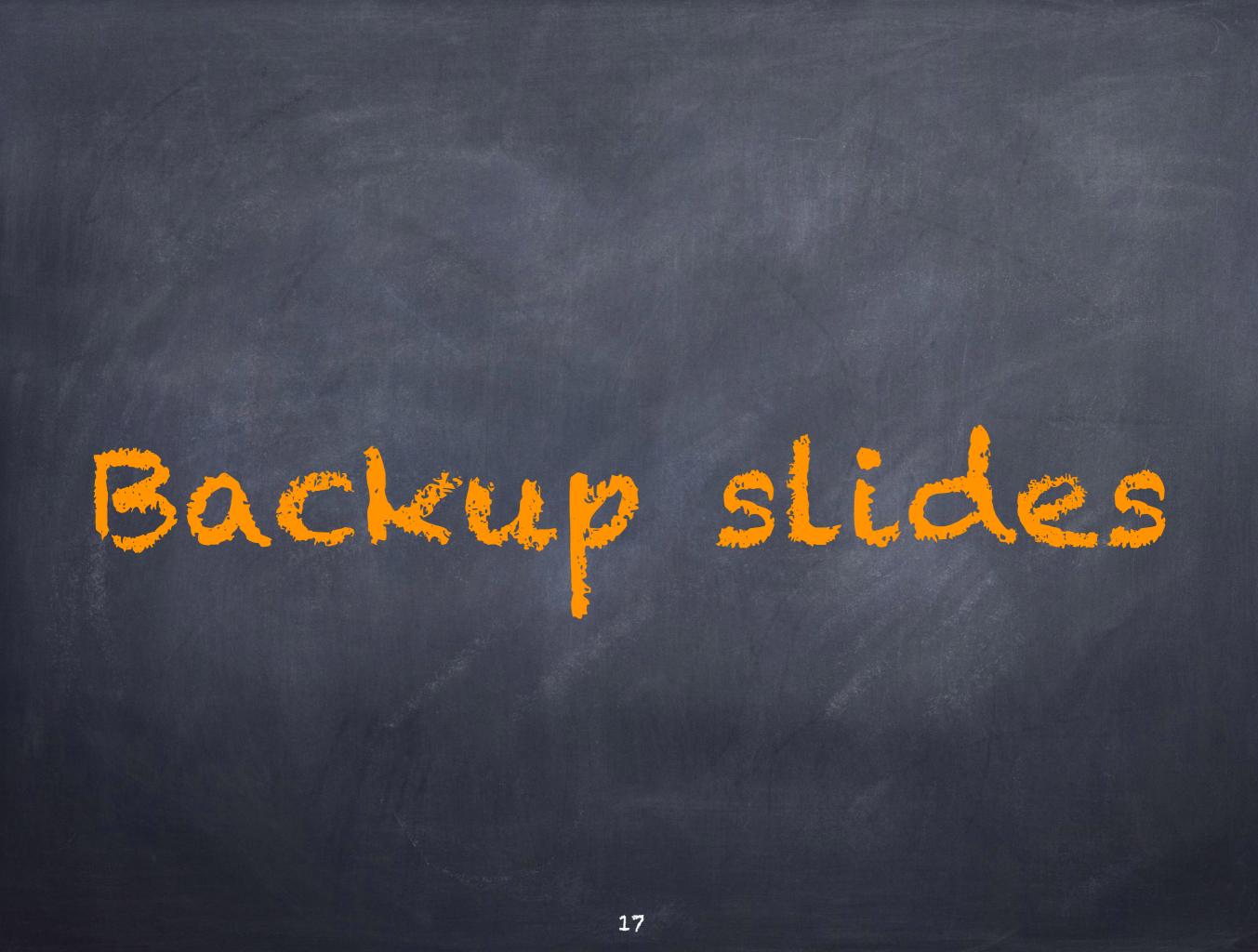

Necklace configuration after Electroweak breaking.



Emergence of a domain wall (orange) from each segment of the necklace due to the breaking of the  $Z_2$  subgroup of  $U(1)_{\chi}$ , with the necklace ultimately becoming the boundary of the wall.

#### GW spectrum for metastable current carrying strings




Adeela, Qaisar, Amil (arxiv: 2311.05564)



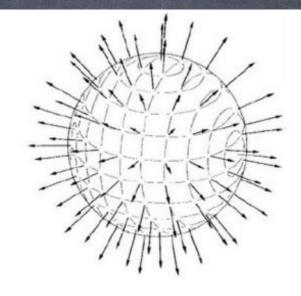
Sor the first time we have found structures like starfish, polypole and walls bounded by necklaces.

- Discovery of primordial monopoles has implications for particle physics and cosmology. Measuring magnetic charge would reveal underlying unified theory. (Recall that SM does not contain monopoles.)
- Cosmic strings (stable or metastable) radiate gravitational waves, will be tested by current/proposed experiments.
- They were first discovered in SO(10), recently in superfluid He 3B.
- Study of more complex structures in the early universe such as the necklace configuration is just beginning.
- Overlap with similar composite structures recently reported in the condensed matter literature is quite exciting.





### SO(10): Predictions


- o Gauge coupling unification.
- @ Quark and Lepton unification.
- Three observed SM neutrino are majorana particles with non-zero masses.
- Existence of right-handed neutrinos (RHNs) key for
  explaining baryon asymmetry via leptogenesis.
- Proton decay though not yet observed, ongoing experiments continue to test.
- @ Electric charge quantization.
- Topological structures main focus of this talk.

#### L'Hooft-Polyakov Monopole (1974)

• Scalar triplet  $\phi^a$  in the adjoint representation of SU(2) breaks  $SU(2) \longrightarrow U(1)_{em}$ .

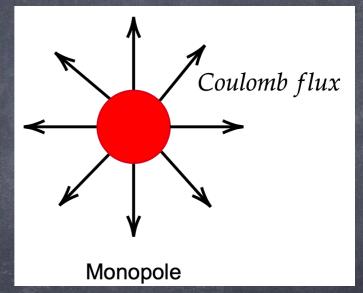
 We want to find a mapping between the sphere at potential minima to the spatial boundary sphere at infinity.

• We choose "hedgehog" configuration such that at large r,  $\phi^a(\hat{r}) = v\hat{r}^a$ .



C. The Hedgehog Ansatz

Source: http:// bartholomewandrews.com/ projects/Skyrmions.pdf


#### L'Hooft-Polyakov Monopole (1974)

 $\circ$  Energy is finite only if  $D_i \phi^a \sim 0$  for large r.

$$W_i^a \sim \frac{\epsilon_{iak} \hat{r}_k}{er}$$
 and  $B_i^a \sim \frac{\hat{r}_i \hat{r}^a}{er^2}$ 

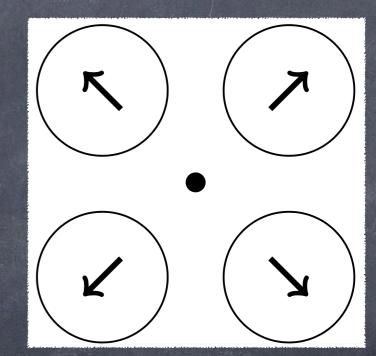
• It carries two units of Dirac charge g = 1/e.

Monopole mass  $M \sim (4\pi/e)M_W$ , core size  $M_W^{-1}$ .



# HOMOLOPY

- $\pi_0(G/H)$  is non-trivial  $\Longrightarrow$  Domain Walls
- $\ \pi_1(G/H)$  is non-trivial  $\implies$  Strings
- $\ \pi_2(G/H)$  is non-trivial  $\implies$  Monopoles
- $\ \pi_3(G/H)$  is non-trivial  $\implies$  Textures


• Theorem:  $\pi_n(G/H) = \pi_{n-1}(H)$  if  $\pi_n(G) = 1 = \pi_{n-1}(G)$ .

## Monopoles in CUTS

• In particular, if H contains any U(1) factors,  $\pi_1(H)$ is non-trivial and the model has monopoles. In GUTs, the GUT group is usually taken to be simply connected and then, since H necessarily contains the electromagnetic U(1) symmetry group,  $\pi_2(G/H)$  is non-trivial and hence, (magnetic) monopoles are necessarily predicted.

### Primordial Monopoles

- ${\ensuremath{\, o}}$  They are produced via the Kibble Mechanism as  $G \longrightarrow H$
- Higgs field in each region takes different direction.
- At the center unbroken phase gets trapped (a defect).
- $\circ$  Center of monopole has G symmetry  $<\phi>=0.$
- · Monopole problem (too many). Need Inflation.



## SU(S) MOMOPOLE

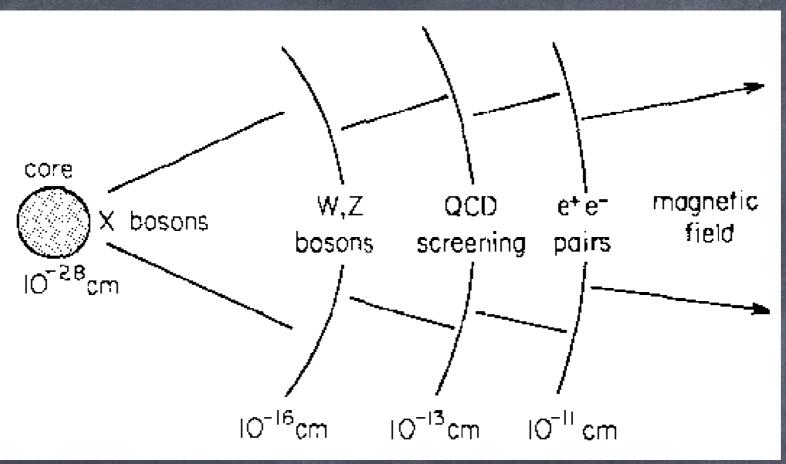
#### • $SU(5) \longrightarrow SU(3)_c \times SU(2)_L \times U(1)_{em} \longrightarrow SU(3)_c \times U(1)_{em}$

Lightest monopole carries one unit of Dirac magnetic charge even though there exist fractionally charged quarks.

- $Q_{em} = diag\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, -1\right)$  (5 representation of SU(5): antidown quarks, in three colors, the neutrino and the electron)
- A  $2\pi$  rotation with  $Q_{em}$  yields:  $diag\left(\frac{2\pi}{3}, \frac{2\pi}{3}, \frac{2\pi}{3}, \frac{2\pi}{3}, 1, 1\right)$

### suls) monopole

•  $Q_{color} = diag\left(\frac{-1}{3}, \frac{-1}{3}, \frac{2}{3}, 0, 0\right)$  (traceless 3 x 3 matrices acting on the quarks only)


• A 
$$2\pi$$
 rotation with  $Q_{color}$  yields:  $diag\left(\frac{-2\pi}{3}, \frac{-2\pi}{3}, \frac{4\pi}{3}, 1, 1\right)$ 

Net effect: we return to identity element.

The monopole carries one unit of Dirac magnetic charge and color magnetic charge.

 ${\rm \bullet}$  Color magnetic field is screened at distances greater than  $\sim \Lambda_{\rm QCD}^{-1}$ 

#### Structure of a grand unified monopole

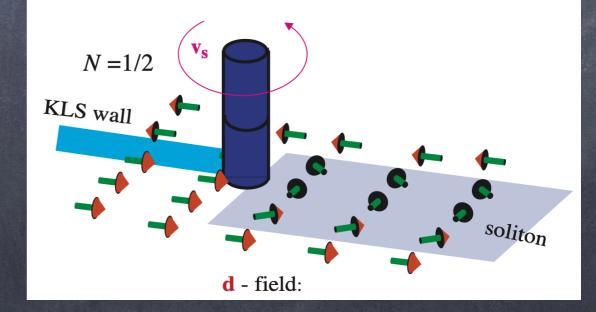


Refer review by John Preskill on Magnetic Monopoles

- $\circ$  Concentrated mass within a tiny core (radius:  $M_X^{-1}$ ).
- $\circ$  Virtual W and Z bosons influence interactions within distances of  $M_Z^{-1}(\sim 10^{-16} cm)$ .
- Exhibits a color magnetic field, extending up to 10<sup>-13</sup> cm, screened by stronginteraction effects.
- Because of large magnetic charge monopole is strongly coupled to cloud of virtual electron-positron pairs, extends up to  $m_e^{-1}(\sim 10^{-11}cm)$ .

### News from Condense Matter physics

The walls bounded by strings have recently been found in superfluid helium  ${}^{3}He-B$ .




#### ARTICLE

https://doi.org/10.1038/s41467-018-08204-8 OPEN

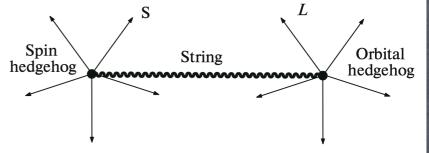
Half-quantum vortices and walls bounded by strings in the polar-distorted phases of topological superfluid <sup>3</sup>He

J. T. Mäkinen ()<sup>1</sup>, V. V. Dmitriev<sup>2</sup>, J. Nissinen<sup>1</sup>, J. Rysti<sup>1</sup>, G. E. Volovik<sup>1,3</sup>, A. N. Yudin<sup>2</sup>, K. Zhang<sup>1,4</sup> & V. B. Eltsov<sup>1</sup>



#### Composite Objects to be Observed

ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2020, Vol. 131, No. 1, pp. 11–17. © Pleiades Publishing, Inc., 2020.




G. E. Volovik<sup>*a,b*</sup>

<sup>a</sup>Low Temperature Laboratory, Aalto University, P.O. Box 15100, Aalto, FI-00076 Finland
 <sup>b</sup>Landau Institute for Theoretical Physics, Chernogolovka, 142432 Russia
 e-mail: volovik@boojum.hut.fi
 Received January 20, 2020; revised January 20, 2020; accepted March 6, 2020

**Abstract**—The spontaneous phase coherent precession of magnetization, discovered in 1984 by Borovik-Romanov, Bunkov, Dmitriev, and Mukharskiy [1] in collaboration with Fomin [2], became now an important experimental tool for study complicated topological objects in superfluid <sup>3</sup>He.

**DOI:** 10.1134/S1063776120070146



**Fig. 9.** Spin and orbital hedgehogs connected by string in magnon BEC (HPD), from [51].

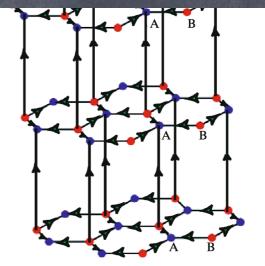
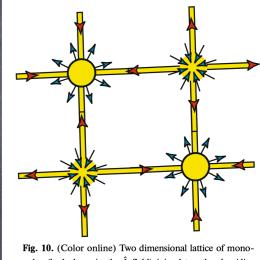




Fig. 11. (Color online) Three dimensional lattice of monopoles (on sites A) and anti-monopoles (on sites B), which are joined together by Alice strings (half-quantum vortices).



poles (hedgehogs in the  $\hat{l}$ -field) joined together by Alice strings (half-quantum vortices). Each monopole is the source or sink of 4 strings.

# Bounds on monopoles

• Let's consider how much dilution of the monopoles is necessary.  $M_I \sim 10^{13}$  GeV corresponds to monopole masses of order  $M_M \sim 10^{14}$  GeV. For these intermediate mass monopoles the MACRO experiment has put an upper bound on the flux of  $2.8 \times 10^{-16}$  cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>. For monopole mass  $\sim 10^{14}$  GeV, this bound corresponds to a monopole number per comoving volume of  $Y_M \equiv n_M/s \lesssim 10^{-27}$ . There is also a stronger but indirect bound on the flux of  $(M_M/10^{17} \text{ GeV})10^{-16} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$  obtained by considering the evolution of the seed Galactic magnetic field.

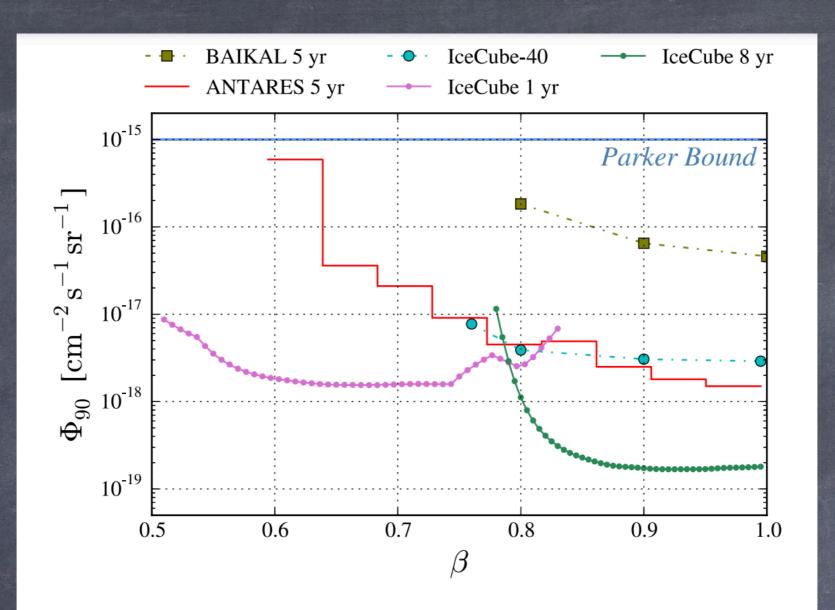
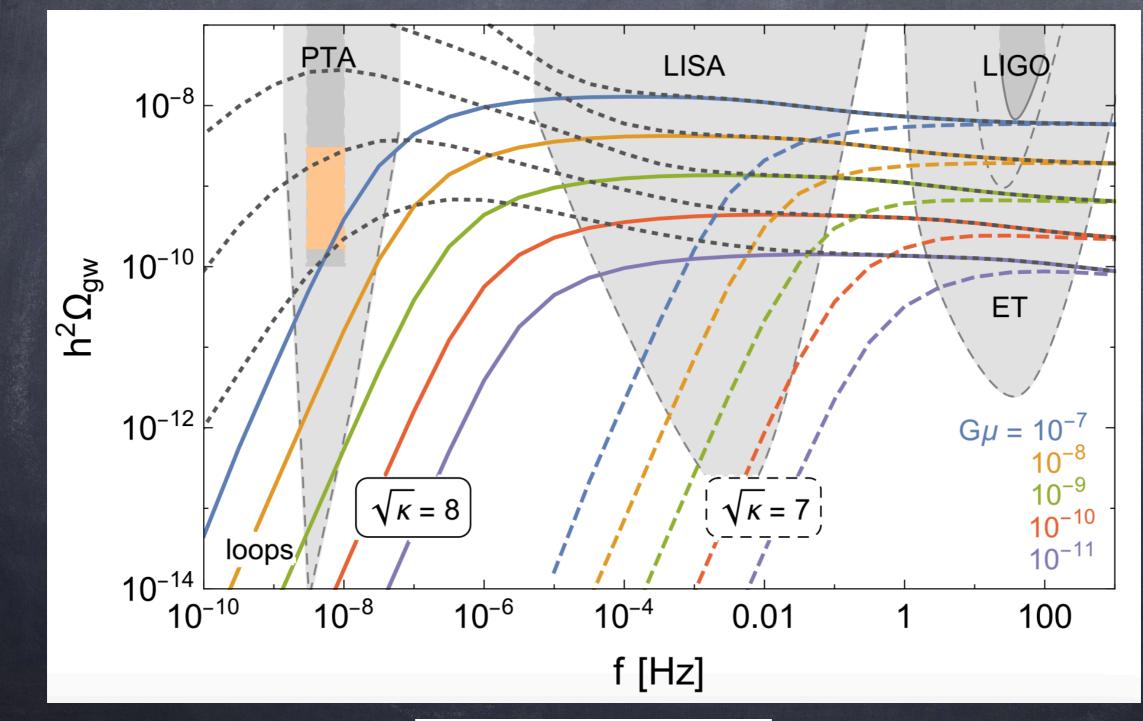




FIG. 4. 90% confidence level upper limit on the cosmic flux of relativistic monopoles as a function of true particle  $\beta$  obtained in the present analysis assuming zero background (dark green curve). Also included are previous results of IceCube [14,15], ANTARES [16], and Baikal [17]. The limits are valid for monopoles with the given  $\beta$  at the detector. The Parker bound [37,38] is shown as reference.

PHYSICAL REVIEW LETTERS 128, 051101 (2022)

#### GW spectrum for metastable strings



Buchmuller, Wilfried et al - arXiv:2107.04578