

A New Track Trigger for Characterization of the Antiproton-Induced Background in the Mu2e Experiment

Ethan Martinez (Yale University) APS DPF-PHENO 15 May 2024

Overview

- Introduction
 - The Mu2e Experiment
 - Antiproton Annihilation in Mu2e
- Topology of Antiproton-Induced Events
- Antiproton (Pbar) Trigger
 - Trigger Sequences in Mu2e
 - Definition
 - Performance
- Conclusion and Next Steps

The Mu2e Experiment

- Search for neutrinoless muon-to-electron conversion in the field of an Al nucleus
- Monochromatic conversion electron signal of ~105 MeV
- Sensitivity goal of 3x10⁻¹⁷ (improvement from previous upper limit by 4 orders of magnitude)
- Muon beam supplied from pulsed proton beam incident on Tungsten target (~3x10⁷ protons every 1.7 μs)
- Charged particles travel in helical shape through Detector Solenoid
- Tracker composed of hollowed planes consisting of 23,000 straw tubes
 - Excellent momentum resolution
- Calorimeter comprised of two annular disks containing a total of 674 CsI crystals
 - Excellent timing and energy resolution

Mu2e calorimeter (Bernstein 2019)

Mu2e tracker (Bernstein 2019)

Antiproton Annihilation in Mu2e

- Antiprotons produced from proton beam's collision with Production Target
- Reach Detector Solenoid and annihilate with protons in Al Stopping Target
 - ~2 GeV available in annihilation
 - Produces pions, muons, and electrons
- Expect electrons that mimic conversion electron signal to be produced at a rate of 0.010 ± 0.010
 - Large systematic uncertainty due to theoretical model of antiproton production cross-section

Channel	Mu2e Run I
SES	2.4 × 10 ⁻¹⁶
Cosmic rays DIO	$\begin{array}{c} 0.046 \pm 0.010 \; (\text{stat}) \pm 0.009 \; (\text{syst}) \\ 0.038 \pm 0.002 \; (\text{stat}) \stackrel{+0.025}{_{-0.015}} \; (\text{syst}) \end{array}$
Antiprotons	$0.010 \pm 0.003 \text{ (stat) } \pm 0.010 \text{ (syst)}$
RPC in-time	$0.010 \pm 0.002 \; ({ m stat}) \; {}^{+0.001}_{-0.003} \; ({ m syst})$
RPC out-of-time ($\zeta = 10^{-10}$)	$(1.2 \pm 0.1 \text{ (stat)} {}^{+0.1}_{-0.3} \text{ (syst)}) \times 10^{-3}$
RMC	$< 2.4 \times 10^{-3}$
Decays in flight	$< 2 imes 10^{-3}$
Beam electrons	$< 1 imes 10^{-3}$
Total	0.105 ± 0.032

Projected backgrounds for Mu2e Run 1

Antiproton Annihilation in Mu2e

- Challenging for conversion electron reconstruction
 - Non-electron particles
 - Particles overlapping in space and time
- No problem for agnostic reconstruction
 - Excellent reconstruction of multiple particles close in space and time
 - Efficient with non-electron particles
 - No initial assumptions on particle trajectory

Event display in the transverse plane of the tracker showing agnostic reconstructed antiproton-induced particle trajectories.

Topology of Antiproton-Induced Events: Momentum

- Large momentum compared to conversion electron signal
 - Mean of 119 MeV/c
- Shape of distribution due to tracker geometry

- Efficient reconstruction of antiproton-induced event
 - Sigma of ~1.5 MeV/c

Topology of Antiproton-Induced Events: Impact Parameter and Number of Straw Hits

- Distance from particle trajectory to center of tracker
- Events originate from Stopping Target ٠
 - Distribution centered around 0 .

- Large number of straw hits in tracker
- Important factor to reduce rate of events with fake tracks ٠

60140

34.63

12.65

0.3239

0

0

Trigger Sequences in Mu2e

Default:

- Conversion electron reconstruction
 - Tracker Pattern Recognition (TPR) + Calorimeter Pattern Recognition (CPR)
- Requires charge and upstream vs. downstream assumption

Pbar:

- Agnostic reconstruction (APR) instead of TPR
- Selects events with multi-track topology using lower momentum cut
- Does not require charge or upstream vs downstream assumption

Trigger Philosophy:

- Maximize signal efficiency
- Minimize rate of fake events
- Take advantage of signal event topology

Definition of Pbar Trigger Selection

- Take advantage of antiproton-induced event topology
 - Especially particle multiplicity
- Define cuts which reduce rate of fake events by significant fraction

Parameter	Cut
Momentum (MeV/c)	P > 80
Impact Parameter (mm)	-150 < D0 < 150
Number of Hits	$N \ge 15$
Number of Tracks	$N \ge 2$

Cuts not shown: Transverse momentum, number of loops, hit ratio, helix lambda, and chi2.

- Good events have at least 2 good tracks
- Efficiency evaluated with pbar-induced events
- Rate evaluated with background events
- Rate drops by ~30% with 80 MeV/c momentum cut

9

Performance of Pbar Trigger Selection: Efficiency

Efficiency Definition:

 $\epsilon = \frac{NumberOfEventsPassed}{NumberOfGoodEvents}$

- Good events have at least 2 good tracks
- Evaluated with pbar-induced events

Performance:

- Highest efficiency achieved with pbar trigger selection
 - ~70% at best
- Agnostic outperforming conversion electron reconstruction by ~10%

Signal efficiencies of three trigger selection sequences: Default, Agnostic, and Agnostic + Pbar.

Performance of Pbar Trigger Selection: Rate of Fake Events

Rate [Hz]

Rate Definition:

 $Rate = InputRate * \frac{NumberOfEventsPassed}{NumberOfEvents}$

- Plotted as a function of number of protons on target
- Evaluated with background events

Performance:

- Agnostic reconstruction increases rate by at most 1kHz
 - Could be reduced by a factor of 2 with a higher cut on the number of tracking planes crossed
- Additional pbar selection does not increase background rate

Instantaneous Rate of Fake Events

Instantaneous rate of fake events of three trigger selection sequences: Default, Agnostic, and Agnostic + Pbar.

Conclusion and Next Steps

- Agnostic reconstruction and multi-track selection are necessary to develop an efficient antiproton trigger to better characterize this background
- We will continue to study antiproton-induced events that failed selection to improve trigger performance
- We will further optimize agnostic reconstruction to reduce rate of fake events
 - Consider making changes to the logic
 - Consider introducing new cuts (timing, tracker-related observables)

THANK YOU!

Backup

Decay-In-Flight Event

Event display in the transverse view of the tracker showing trajectory of decay-in-flight particles from antiproton-induced event.

Event display in phi-z view of the tracker.

‡ Fermilab