

Recent MicroBooNE Cross Section Results

London Cooper-Troendle on behalf of the MicroBooNE Collaboration May 14th, 2024

Challenges in Neutrino Interaction Modeling

Need high precision for oscillation measurements, however:

- Wide range of energies Spans QE, RES, DIS Ο
- Range of nuclear targets across experiments Hydrogen, Deuterium, Carbon, Argon, Iron, Lead Ο
- Complex QCD physics inside nucleus
 - Nuclear initial state 0
 - Nucleon-nucleon correlations \bigcirc
 - Final state interactions Ο

MicroBooNE Event Display

About MicroBooNE

- 85 tonne liquid argon time projection chamber
 - Low detection thresholds
 - Precise spatial resolution and calorimetry
 - Powerful particle identification
- 0.8 GeV peak neutrino energy

v CC Inclusive 3D

- First triple-differential cross section on argon
- Measurement of E_v is crucial for model development and osc measurements
- Data-driven validation and fake data studies
- Disagreement with all models examined

arXiv:2307.06413

Model Name

MicroBooNE model

GENIE v2

 χ^2/ndf

741.1/138

326.1/138

v_{μ} CC0pNp Inclusive 3D

- Separates final state by number of protons
- Many cross sections measured in 1D, 2D, 3D with correlations between each reported

36 cm²/GeV/Ar)

 GIBUU describes K_p Op/Np split well, perhaps because of more realistic FSI model

 v_{μ} CCNp0 π

- 10 observables, 14 distributions, 359 bins
 - Covariance between all bins reported
- Underprediction at low p_{μ} / overprediction at high p_{μ}
- Muon-Proton angle shape disagreement:
 GiBUU and NEUT perform best

Model	χ^2 / 359 bins
GENIE 3.0.6	1859
NEUT 5.6.0	2582
MicroBooNE Tune	2673
GENIE 3.2.0 G21_11b	2947
GiBUU 2021.1	4836
NuWro 19.02.1	5315
GENIE $3.2.0 \text{ G18}_{02a}$	5724
GENIE 2.12.10	7799

- Consider interaction: $v \rightarrow \mu + p$
- Transverse kinematics insensitive to E₁
- Total transverse momentum µ + p conserved before nuclear initial state and final state interactions

 p^{ν}

- Consider interaction: $v \rightarrow \mu + p$
- Transverse kinematics insensitive to E
- Total transverse momentum µ + p conserved before nuclear initial state and final state interactions
- $\bullet \quad \delta p_{T} = \left| p_{T}^{\mu} + p_{T}^{p} \right|$

 p^{ν}

(a) All events MicroBooNE Data 6.79 $\times 10^{20}$ POT 5 Stat \oplus Shape Norm 50 $\frac{d\sigma}{d\delta p_T} \left[10^{-38} \frac{cm^2}{GeV/c \ Ar} \right]$ 08.9/13)40 8 no-1 -G18 FSI (6.0/13) 30 20 10 0.2 0.8 Ό 0.4 0.6 δp_T [GeV/c]

<u>Phys. Rev. Lett. 131, 101802 (2023)</u> <u>Phys. Rev. D 105, 072001 (2022)</u>

<u>Phys. Rev. Lett. 131, 101802 (2023)</u> <u>Phys. Rev. D 105, 072001 (2022)</u>

Global Kinematic Imbalance (GKI)

$$\vec{p}_{N} = \vec{p}_{\mu} + \vec{p}_{p} - E_{cal}\hat{v}$$
$$\alpha_{3D} = \cos^{-1}(\vec{q} \cdot \vec{p}_{N} / |q| \cdot |p_{N}|)$$

- Even larger FSI impact and model separation
- Different models preferred at different phase space regions $\frac{cm^2}{GeV/cAr}$
 - Can select for/against FSI, QE, 0 MEC depending on region used
 - Genie does best in low-FSI 0 regions
 - GiBUU does best in high-FSI Ο regions

Stat
Shape

0.4

p_n [GeV/c]

Norm

ŧ

......

0.2

40

30

20

10

10⁻³⁸

dp

Phys. Rev. C 95, 065501 (2017) arXiv:2310.06082

 $v_{\mu} NC\pi^0$ and $CC\pi^0$

- Significant source of background
 - If one photon is missed, will enter photon and e⁺e⁻ searches as bkg
 - Can also mimic v_e interactions
- CCπ⁰ have μ track to aid event selection and v vertex reconstruction
- First NCπ⁰ measurement on argon last year
 - NEUT model gives best prediction (χ^2 /ndf = 2.4/2)
 - NuWro does well at 1p but overpredicts 0p channel (χ^2 /ndf = 5.1/2)

Phys. Rev. D 107, 012004

First measurement on argon!

arXiv:2404.09949 arXiv:2404.10948

 $v_{\rm o}$ NC π^0 and CC π^0

- New differential measurements on NC and CC channels
 - \circ Consistent model hierarchy between ${\rm p}_{_{\!\mathcal{T}}}$ measurements
 - NEUT and GENIEv3 perform best
- FSI impacts demonstrated
 - Charge exchange boosts $CC\pi^0$ (from dominant $CC\pi^+$)
 - Charge exchange reduces NC π^0 (to sub-dominant NC π^+)
 - Shifts 0p to Np

arXiv:2404.09949 arXiv:2404.10948

14

 $v_{\rm I}$ NC π^0 and CC π^0

- New differential measurements on NC and CC channels
 - Consistent model hierarchy between p_ Ο measurements
 - NEUT and GENIEv3 perform best Ο
- FSI impacts demonstrated
 - Charge exchange boosts $CC\pi^0$ (from 0 dominant $CC\pi^+$)

nucleon]

-

GeV/c

Cm2

- Charge exchange reduces NC π^0 (to 0 sub-dominant NC π^+)
- Shifts 0p to Np Ο

η Resonance Production

- Background to v_e and and BSM processes
- 1-2% of DUNE *ν* will have η
 10% of RES include η
- First measurement on argon
- Calibrate EM shower reconstruction at high energies

Data deficit w.r.t. all model predictions. Genie is ~within uncertainties, NuWro is in some tension, and NEUT is rejected.

Reconstructed W [GeV]

15

Λ Baryon Production

- Very rare process, 5 events observed
- Detected through Λ -> p + π⁻ decay (64% branch fraction)
- Measured cross section (2^{+2.2}/_{-1.7}) consistent with Genie and NuWro predictions
- Statistics dominated, but 4x stats measurement underway

Neutron Tagging

- Neutrons contribute to missing energy, hampering E₁, reconstruction
- Detected through n + Ar -> p scattering in LAr
- First attempt at measurement on Ar
 - Most neutrons don't produce protons
 - Those that do are usually very low energy
 - Look for separated proton traveling outward from v vertex

Summary

- MicroBooNE cross sections aid model development, especially for DUNE
- Inclusive measurements reconstruct E_v and provide strong model discrimination
- TKI & GKI measurements give insight on final state modeling
- Neutral pion and rare process measurements help constrain background predictions
- Many more measurements in the works!

MicroBooNE Papers

2017 2018 2019 2020 2021 2022 2023 2024

Backup

TABLE I. Comparisons between various models and the unfolded three-dimensional measurement within each E_{ν} slice.

Model Name	Total v^2/ndf	[0.2, 0.705] GeV	[0.705, 1.05] GeV	$[1.05, 1.57] \mathrm{GeV}$	$[1.57, 4.0] \mathrm{GeV}$
GENIE v2	741.1/138	$\frac{\chi}{71.4/28}$	<u>64.4/35</u>	<u>x</u> / IIII 64.3/42	35.6/33
MicroBooNE model	326.1/138	85.0/28	77.8/35	44.6/42	31.9/33
GENIE v3 untuned	322.2/138	94.1/28	84.8/35	52.2/42	37.3/33
GiBUU	269.9/138	33.8/28	54.8/35	52.6/42	31.0/33
NEUT	243.3/138	58.5/28	59.9/35	43.1/42	38.2/33
NuWro	212.1/138	54.8/28	67.3/35	40.9/42	29.6/33

 v_{μ} CC Inclusive 3D