

A Search for Higgs Boson Pair Production in $HH \rightarrow bbWW$ using CMS Data

Devin Aebi DPF-Pheno 2024 14 May 2024

Outline

- The LHC and CMS
- Run 2 $HH \rightarrow bbWW$ Analysis Summary
 - Techniques
 - Heavy Mass Estimator
 - Results
 - Potential Improvements
- New Ideas for Run 3
 - Resonant Mass Estimation for Single Lepton Channel
 - Better background control
- Conclusions

Ā M

Introduction to the LHC and CMS

- Large Hadron Collider (LHC) The largest particle accelerator in the world
 - Collide protons and heavy ions at high energy and high intensity to study particle physics
 - Located near Geneva Switzerland
 - 27km long, 100m underground
 - Run2 data period of 2015-2018 at center-of-mass energy (\sqrt{s}) 13 TeV
 - Run3 data period of 2022-2025 at center-of-mass energy (\sqrt{s}) 13.6 TeV
 - LHC Design center-of-mass energy (\sqrt{s}) 14 TeV
 - LHC delivers collisions at 4 points along the ring
 - Up to experiments to detect the collision results
- Compact Muon Solenoid (CMS)
 - General purpose detector at the LHC, detects collision data
 - Based around a superconducting solenoid magnet (3.8 Tesla)
 - Magnet bends charged particles to help identification
 - Built in layers to best measure all types of particles
 - Tracker, ECal, HCal, Solenoid, Muon System
 - Subdetectors measure hit time, position, deposited energy
 - Reconstructs physics objects Muons, Electrons, Taus, Jets, MET, etc

Ă M

$HH \rightarrow bbWW$

- Non-Resonant (NonRes) Production
 - Predicted in the SM destructive interference between box diagram and tree diagram
 - Some Beyond Standard Model (BSM) scenarios
 - Measurement of HH Cross Section
 - Access to Higgs self trilinear coupling
- Resonant (Res) Production
 - Massive new resonance X decaying to HH
 - Several models explain existence of resonance
 - Spin-0 Radion
 - Spin-2 Gravitons
- Investigate both Single Lepton (SL) and Double Lepton (DL) Channels
 - <u>Previous CMS analysis</u> with 2016 data covered only DL channel
- Background
 - DL Channel $t\bar{t}$
 - SL Channel W+Jets
 - Others Drell-Yan, single top, Fake leptons, etc

 ℓ^+

 Z/γ^*

Ā M

GGF couplings

TEXAS A&M

 $\mathcal{BR}(HH \to XXYY)$ bb YR4, arXiv:1610.07922 WW 10^{-2} .0067 0.0350 0.0 $\mathbf{g}\mathbf{g}$ 3.93_{10-3} 0.0103 0.0268 0.0731 10^{-3} $\tau\tau$ cc 10^{-4} ZZ 10^{-5} 5.15 1.19 1.31 2.85 3.72 9.70 2.64 $\cdot 10^{-6}$ $\cdot 10^{-4}$ $\cdot 10^{-4}$ $\cdot 10^{-4}$ $\cdot 10^{-4}$ $\cdot 10^{-4}$ $\gamma\gamma$ -10^{-6} $Z\gamma$ $\begin{array}{ccc} 6.67 & 9.88 \\ \cdot 10^{-7} & \cdot 10^{-7} \end{array}$ 10^{-7} $Z\gamma \gamma\gamma ZZ$ cc $\tau\tau$ gg WW bb $H \rightarrow XX$

Analysis Strategy

TEXAS A&M

Ă Ň

Heavy Mass Estimator ĀM Phys. Rev. D 96, 035007 Likelihood for single event Problem for Res DL Channel HME likelihood function of one typical event, B3 • $H \rightarrow WW \rightarrow l\nu l\nu$ cannot be fully 10.0 HME **Apply the HME** reconstructed due to 2 neutrinos True to all selected events .ikelihood 4 equations and one bound constraint function most probable mass н 6 unknowns from two neutrinos as estimator, HME mass 0.03 • If we can constrain the resonance mass, we could improve the analysis 0.0 True Mass 500 450 550 MET M_u [GeV] Heavy Mass Estimator (HME) M, from HME reconstruction $E_{T.x}^{miss} = p_x(\nu_{\ell_1}) + p_x(\nu_{\ell_2})$ **B**3 1. Randomly generate η and ϕ of one neutrino B6 $\mathbf{E}_{\mathrm{T},\mathrm{v}}^{\mathrm{miss}} = \mathbf{p}_{\mathrm{v}}(\nu_{\ell_1}) + \mathbf{p}_{\mathrm{v}}(\nu_{\ell_2})$ 2. Jet-MFT corrections to ensure the invariant 0.08 ▲ B9 mass of dijet is equal to Higgs mass $m_W(\text{onshell}) = \sqrt{p^2(\ell_1, \nu_{\ell_1})}$ TTbar 0.06 3. Check if this random generation is kinematically allowed by solving constraints $m_{H}^{2} = \left(p(\ell_{1}) + p(\ell_{2}) + p(\nu_{\ell_{1}}) + p(\nu_{\ell_{2}})\right)^{2}$ 0.04 4. Combine corrected dijet and record this 0.02 estimation of the heavy resonance $m_W(\text{offshell}) = \sqrt{p^2(\ell_2, \nu_{\ell_2})} < M_H/2$ 5. Repeat this procedure many times and build 400 500 600 700 800 900 a likelihood for a single event

6. Return the most probable mass as the final

heavy resonance for this event

M_H [GeV] HME mass shapes for signals and ttbar

Signal	B3	B6	B9	
Mass, GeV	353	511	662	F

Results: Non Resonant

- NonRes MVA
 - Trained separately in SL and DL channels
 - Preprocessing Lorentz Boost Network (LBN) then multi-class DNN
- NonRes Results
 - Limits fit over MVA output
 - Observed (expected) limits for $pp \rightarrow HH$ production cross section is 14 (18) times that predicted by the standard model
 - Higgs trilinear coupling κ_{λ} is constrained between [-7.2,13.8] (expected [-8.7,15.2])

TEXAS A&M

ĀM

Results: Resonant Spin-0 and Spin-2

- Resonant MVA
 - Trained separately in SL and DL channels
 - Preprocessing Lorentz Boost Network (LBN) then parametric multiclass DNN
 - Train over multiple signal mass points
 - Applied separately per mass point
- Resonant Results
 - Limits fit over MVA output
 - DL channel fit over MVAxHME 2D
 - Results show no evidence of a spin-0 or spin-2 boson

TEXAS A&M

600

600

700

700

138 fb⁻¹ (13 TeV)

Ik Badion ∆=2 TeV, kL=3

Bulk Badion A=3 TeV, kL=35

Singlet model (xSM

800

Expected (95%)

Bulk Graviton $\tilde{\kappa} = 1.0$

Bulk Graviton $\tilde{\kappa} = 0.5$

Bulk Graviton $\tilde{\kappa} = 0.3$

800

900

M_{X. spin-2} [GeV]

1000

8

900 M_{X. spin-0} [GeV]

138 fb⁻¹ (13 TeV

Results Compared to 2016 CMS Analysis

- SL Channel is completely new in full Run 2 analysis
- Large improvement in high mass region compared to previous 2016 CMS Analysis!
 - 10x improvement is much better than expected improvement from only luminosity $\sqrt{138/36} \approx 2$

Preparing for Run 3 Analysis

• How can we improve for Run 3

Improvement to Fake Rate estimation

• Fakes estimation was taken from a previous analysis, lead to difficulties in Run 2 analysis

New HLT paths designed for bbWW in progress

• Trigger requiring 2 b jets and 1 lepton

Bring HME to Single Lepton Channel

- Run 2 SL limits were higher than DL limits Especially in the high mass region
- · Adding HME could show major improvement
- In SL channel there was no attempt to reconstruct resonance mass
- While SL channel has only one ν from $W\!\!,$ a straightforward calculation is obscured by jet mismeasurements
- Early generator level results show HME performs better than the purely analytical solution
- Improve background rejection (Next Slide)

HME for Resonant Single Lepton Channel

Improved Background Control

- Resonant Run 2 Analysis was a big improvement, but was still not perfect
 - As mass increases, $t\bar{t}$ is no longer leading background, and DY/Fakes become larger
 - $t\bar{t}$ is only irreducible background, all others should be fixable
 - Potential reason for poor performance could be poor background control for non $t\bar{t}$ backgrounds
 - Run 2 assumed that $t\bar{t}$ was most important background
 - Only $t\bar{t}$ shares the same final state as signal (*bbll*)
 - Reducible background contribution should be further suppressed

Table 5.13: Overview of expected total background contributions and the breakdown of major background sources in the most sensitive signal region of this analysis for the 2018 data-taking year.

ĀM

		N(4) N(4-4) N(C)	N(4-4DIZC)	NI/E-1)	NI(OT)	NI/DV/	NT(44)	M C-W	
		N(tt)/N(totBKG)	N(totBKG)	N(Fakes)	N(ST)	N(DY)	N(tt)	M_X , Gev	
Macthut		0.82	1200	24	23	142	988	250	
iviostiy i		0.88	6268	70	150	467	5520	300	
_		0.90	4965	46	123	300	4464	350	
		0.88	1542	20	54	100	1355	400	¥
Backgroun changing		0.74	249	2.6	20	34	176	450	õ
		0.59	104	1.75	14.6	21.8	61	500	5
		0.33	25.7	2.3	6.4	6.7	8.6	550	ate
		0.28	17.5	0.3	6.4	5.6	4.8	600	Š
_		0.25	16.6	0.39	3.0	7.3	4.1	650	ב
Mostly D	(0.20	10.4	0.65	1.7	4.8	2.1	700	
		0.19	5.8	1.0	0.40	4.8	1.1	750	
		0.17	4.4	0.64	0.64	1.53	0.75	850	

Values taken from 2018 Res DL Channel

DNNxHME Shape Distribution in Signal Region

S A & V

Conclusion

- Full CMS Run 2 Analysis $HH \rightarrow bbWW$ with 138 fb⁻¹ data
 - Non-Res Observed (Expected) limits on the $pp \rightarrow HH$ cross section are 14 (18) times SM
 - Res No evidence for spin-0 or spin-2 boson
 - Large improvement compared to 2016 CMS analysis (DL only) with 36fb^{-1}
- Further improvement is still possible on-going work for Run3 analysis
 - Better reducible background control in the high mass region can have a significant effect on limits
 - For resonant SL channel, the addition of a Heavy Mass Estimator technique to control jet met resolution may show a large improvement similar to what was seen in DL channel
 - Other optimizations to the analysis are including using newer MVA techniques, new High Level Triggers, and new background estimations (Fakes/DY)

L'EXAS A&M

Ā M

Backup

Analysis Strategy

Analysis Strategy

- Target both GGF and VBF production modes
- 2 leptonic channels based on W decay
 - Single Lepton (SL) $-WW \rightarrow l\nu qq$
 - Double Lepton (DL) $-WW \rightarrow l\nu l\nu$
- 2 jet channels based on reconstructed *b* jets
 - Resolved 2 small radius jets coming from *b* quarks
 - Boosted 1 large radius jet
 containing 2 subjets from nearby b
 quarks
- bJet identification done by Deep Neural Net (DeepJet)

Event Selection

- Leptons
 - 2 (1) lepton in DL (SL)
 - Remove Z resonance (DY) $81 < m_{ll} < 101 \text{ GeV}$
- Jets
 - Resolved
 - ≥ 2 (≥ 3) small radius jets in DL (SL)
 - Boosted
 - 1 large radius jet in DL and SL
 - And ≥ 1 small radius jet in SL

Background Estimation

- Main Backgrounds
 - *tt*, Drell-Yan, single top, fakes (misidentified leptons), W+jets
- Data Driven Estimations
 - Fake leptons, QCD Multijet (SL), Drell-Yan (DL)
 - •Simulation Driven Estimations All else

Signal Extraction

- Heavy Mass Estimator (Resonant DL)
 - Scans phase space for ν possibilities to find most probably resonant mass
- MVA
 - Deep Neural Net to separate signal and background (separate for SL/DL and resonant/non-resonant)

Single Lepton HME

- HME for Single Lepton (SL)
 - Sensitivity in SL channel is comparable with sensitivity in DL channel
 - In SL channel there was no attempt to reconstruct resonance mass
 - While SL channel has only one ν from $W\!\!\!\!\!\!$, a straight-forward calculation is obscured by jet mis-measurements
 - HME is capable of ealing with these mis-measurements by scanning the phase space

Method

- Rescale leading b jet by PDF estimated from simulation
- Rescale subleasing \boldsymbol{b} jet to constrain Higgs mass
- Missing Transverse Energy (MET) consistently corrected with \boldsymbol{b} jet corrections
- Preliminary Results
 - Early generator level results show HME performs better than the purely analytical solution
 - Tested with simulated $m_X = 400$ GeV resonance

Ā M

Why $X \rightarrow HH \rightarrow bbWW$

- The bbWW channel has the second highest $HH \rightarrow XXYY$ branching ratio
- Important to investigate multiple channels
- *W* bosons decaying into leptons
 - Leptons are clean
- Has large overlap with $t\bar{t}$ (same final states)
 - Problematic at low mass ($t\bar{t} \approx 350 GeV$)
 - Clean at high mass

FIG. 8. 13 TeV LHC projected 95% C.L. limits (solid black lines) on $\sigma_{pp \to h_2} \times BR_{h_2 \to h_1 h_1}$ (in pb) for an integrated luminosity $\mathcal{L} = 300 \text{ fb}^{-1}$ and assuming an ATLAS-CMS combination, in the $b\bar{b}W^+W^-$ final state [as shown in Fig. 5 (right)] and in the $b\bar{b}\tau^+\tau^-$ and $b\bar{b}\gamma\gamma$ final states (through a naive $\sqrt{\mathcal{L}}$ extrapolation of the resonant di-Higgs 13 TeV CMS analysis in the $b\bar{b}\tau^+\tau^-$ [78] and $b\bar{b}\gamma\gamma$ [79] final states). In all cases, the dark (pale) colored bands correspond to the confidence intervals for the expected limit at 68% (95%) coverage probability.

Run 2 Object Selection

Jets

TEXAS A&M

Ā M

Run 2 MVA

Run 3 MVA

- Simple Parametric DNN Signal/Background binary classifier has been built and is being tested
 - Signal:
 - GluGlutoRadiontoHHto2B2Vto2B2L2Nu
 - Masses [250, 260, 270, 280, 300, 350, 450, 550, 600, 650, 700, 800]
 - Backgrounds:
 - TTto2L2Nu
 - DYJetsToLL_M-50
 - DYto2L-2Jets_MLL-10to50
 - TbarWplusto2L2Nu
 - TWminusto2L2Nu
- Currently being worked on, but early results show working separation of signal and background, and good parametric performance
- Need to add other backgrounds and include Graviton signal

Ă M

Run 3 Background Estimation

TEXAS A&M

Ă M

S/root(B) m800 MaxS=1.740852699893505, Cut=0.9500000000000001, Acc=0.48848454235908034

22

Run 2 Event Selection

Full Event Selection for the X \rightarrow HH \rightarrow $b\overline{b}W^+W^- \rightarrow b\overline{b}\ell^+\nu\ell^-\bar{\nu}$						
Trigger	Sing					
Event vertex	One primary vertex v	Scale				
Filters	Passing filter algorithms given in Appendix Table B.2					
Leptons*	Exact two tig					
	cone- $p_{\rm T}$ > 25 (15) GeV for leading (sub-leading) lepton,					
	$m_{\ell\ell}^{\ddagger} > 12 \text{ GeV}$ and $ m_{\ell\ell}^{\ddagger} - m_Z > 10 \text{ GeV}$ for same flavor lepton pairs					
Jets [†]	Resolved 1b	Resolved 2b	Boosted			
	\geq two AK4-jets, with	\geq two AK4-jets, with	\geq one AK8-jet, with			
	exactly one passing	\geq two passing	\geq one subjet passing			
	medium b-tagging WP	medium b-tagging WP	medium b-tagging WP	Back		

Event Selection

- Pass an HLT
 - Redundant for Data, but MC is also required to pass HLT
- Good primary vertex
- Two tight leptons with opposite charge and a minimum p_T
 - Opposite charge requirement from H->WW having opposite charged W's
- + Remove Z decays $|m_{ll} m_Z| > 10 GeV$
- Filter into categories
 - + Resolved 1b At least 2 AK4-Jets with only one passing medium b-tagged WP
 - Resolved 2b At least 2 AK4-Jets with at least 2 passing medium b-tagged WP
 - Boosted At least 1 AK8-Jet with at least 1 subjet passing medium b-tagged WP
- Category priority goes to Boosted

Ă Ň

MVA Categories

24

TEXAS A&M

Ā M