Toward a Measurement of the Z Boson Decaying to Four *b*-Quarks with the CMS Detector

Andrew C. Roberts, Carnegie Mellon University

On Behalf of the CMS Collaboration

DPF-Pheno May 15th, 2024

Motivation

- Goal: measure $b\bar{b}b\bar{b}$ branching fraction of Z boson at CMS
- Measured by LEP experiments to be $(3.6 \pm 1.3) * 10^{-4}$ (PDG average)
- Would be a high-precision test of QCD involving *b*-quarks
- Techniques could be applied to other SM/BSM resonances decaying to $b\bar{b}b\bar{b}$ i.e. $H \rightarrow AA \rightarrow b\bar{b}b\bar{b}$

Approach

- LEP measured at Z mass, selected four jets with three b-tags
- At CMS, low boost requires additional boson to trigger on the event

• For each, expect background events from QCD, $t\bar{t}$ +Jets, W^{\pm} +Jets, Z^{0} +Jets (w/o 4b)

Approach

- CMS *b*-tagging includes information on both single-*b* and multi-*b* structures
- Single-b-tagged jets alone do not differ greatly between processes

Carnegie Mellon University

Andrew C. Roberts

Approach

• Multi-*b*-tagged jets are powerful discriminant

Preliminary Selection

- Target boosted Z^0 boson decaying to $b\bar{b}b\bar{b}$ in two jets
- Preselection:
 - ▶ HLT: scalar sum of jet $p_T > 1050$ GeV or single jet with $p_T > 500$ GeV
 - Two jets with $p_T > 30$ GeV, $|\eta| < 2.4$, medium *b*-tag
- At least two jets with $p_T > 30$ GeV, $|\eta| < 2.4$, and:
 - ▶ One passing medium multi-*b*-tag
 - ► At least one passing medium single-*b*-tag
- Build Z^0 system from multi-*b*-tagged jet and closest single-*b*-tagged jet in ΔR
- Require $\Delta R_{jj} < 1.5$
- Target $m_{jj} \in [70, 110]$ GeV

Dijet ΔR Cut

Dijet ΔR Cut

Carnegie Mellon University

Main slides: 8/13

Data-Driven Background Estimation

- Backgrounds: QCD (largest), $t\bar{t}$ +Jets, W^{\pm} +Jets, Z^{0} +Jets (w/o 4B)
- Can estimate backgrounds with ABCD method:
 - ► Create four bins A, B, C, and D from the combination of two independent boolean values
 - Reasonable to assume $\frac{A}{B} = \frac{C}{D}$ and estimate $A = \frac{BC}{D}$
- Define four regions, all passing preselection:

- When estimating background, only unblind "validation region" with $m_{jj} \notin [70, 110]$ GeV
- A few issues with this, but should be a reasonably close estimate for now

Background Estimate - Simulation

Carnegie Mellon University

Main slides: 10/13

Background Estimate - Data

Projected Sensitivity

Carnegie Mellon University

Main slides: 12/13

Conclusions and Outlook

- Potential for $Z^0 \rightarrow 4b$ measurement at CMS explored using medium-high boost approach
- Preliminary projection looks promising with relatively simple analysis procedure
- Study ways to exploit multi-*b*-jet substructure
 - ▶ In ideal case expect exactly three *b*-quarks in jet
 - ▶ First ideas showed useful information exists but usage was not obvious
 - ▶ ML of some type may be best way to extract
- Explore additional approaches
 - ▶ Highly boosted case is interesting, but trouble distinguishing from boosted $Z^0 \rightarrow 2b$
- Improve background estimation
 - Current method is a good first step but likely underestimate in SR
- Expand to include Run 3